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Artificial intelligence (AI) technology in pathology has been utilized in many

areas and requires supervised machine learning. Notably, the annotations that

define the ground truth for the identification of different confusing process

pathologies, vary from study to study. In this study, we present our findings in

the detection of invasive breast cancer for the IHC/ISH assessment system,

along with the automated analysis of each tissue layer, cancer type, etc. in

colorectal specimens. Additionally, models for the detection of atypical and

typical mitosis in several organs were developed using existing whole-slide

image (WSI) sets from other AI projects. All H&E slides were scanned by different

scanners with a resolution of 0.12–0.50 μm/pixel, and then uploaded to a

cloud-based AI platform. Convolutional neural networks (CNN) training sets

consisted of invasive carcinoma, atypical and typical mitosis, and colonic tissue

elements (mucosa-epithelium, lamina propria, muscularis mucosa, submucosa,

muscularis propria, subserosa, vessels, and lymph nodes). In total, 59 WSIs from

59 breast cases, 217 WSIs from 54 colon cases, and 28 WSIs from 23 different

types of tumor cases with relatively higher amounts of mitosis were annotated

for the training. The harmonic average of precision and sensitivity was scored as

F1 by AI. The final AI models of the Breast Project showed an F1 score of 94.49%

for Invasive carcinoma. The mitosis project showed F1 scores of 80.18%,

97.40%, and 97.68% for mitosis, atypical, and typical mitosis layers,

respectively. Overall F1 scores for the current results of the colon project

were 90.02% for invasive carcinoma, 94.81% for the submucosa layer, and

98.02% for vessels and lymph nodes. After the training and optimization of the

AImodels and validation of eachmodel, external validators evaluated the results

of the AI models via blind-reader tasks. The AI models developed in this study

were able to identify tumor foci, distinguish in situ areas, define colonic layers,

detect vessels and lymph nodes, and catch the difference between atypical and
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typical mitosis. All results were exported for integration into our in-house

applications for breast cancer and AI model development for both whole-

block and whole-slide image-based 3D imaging assessment.
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Introduction

In recent years, machine learning-based image analysis

methodologies have been actively developed in the field of

digital pathology to aid the quantification of diagnostic

parameters in histology and tumor morphology [1].

Specifically, deep learning is a machine learning methodology

that has an accelerated ability to assist in pathological diagnosis

[2]. It can provide objective and common metrics for uncertain

diagnoses, and more importantly, it has the potential to add new

information that could not have been quantified previously by

pathologists. Recent studies support that the majority of

histopathological malignancies can be diagnosed with high

accuracy with deep learning methods [3].

Artificial intelligence (AI) in pathology has important

implications not only for diagnostics, but also for cancer

research, clinical trials and AI-enabled therapeutic targeting

[4]. The involvement of AI in a number of diagnostic tasks

usingWSIs has expanded rapidly in the last year [5–7]. Achieving

the identification of cancer is remarkable. In a study conducted

by Bejnordi and colleagues in 2017, out of 32 AI models

developed for breast cancer detection in lymph nodes, the best

model achieved a human-like area under the curve (AUC) of

0.994 (95% CI 0.983–0.999) [8]. In 2020, Thakur et al reviewed

30 studies related to colorectal cancer, some of which showed

high diagnostic accuracy, but the overall study size

was limited [9].

AI and other neural networks have made great progress in

capturing the detection ofmorphological diagnoses by pathologists

with digital platforms [10]. Diagnostic protocols focus equally on

efficiency and accuracy [11]. Recently, code-free and user-friendly

solutions have become commercially available to assist in the

design, training, validation, and deployment of AI models for

pathologists without prior knowledge of machine learning and

image processing. Our research group has utilized these code-free

solutions to develop in-house AI models using Aiforia’s cloud-

based platform. We also investigated their availability,

convenience, performance, and expansivity in general digital

pathology applications. We chose Aiforia because it is easy to

use, accessible, fast, and integrated for our research studies. In this

paper, we report three AI models that aided the analysis of

prognostic parameters detection of Breast and Colon cancer

specimens, and mitosis detection in several organs.

Breast cancer is the most common cancer in women [12].

One of the factors determining the treatment of breast

carcinomas is the results of molecular tests performed in

invasive carcinoma areas [13]. The assessment of HER2 gene

amplification, a key molecular test, is made under a microscope

using the in situ hybridization (ISH) method in invasive tumor

areas [14]. Separating the invasive tumor area from the non-

invasive area in the breast tissue is important because it

determines the diagnosis and grade of the tumor, and most

importantly, it determines the targeted therapy based on the

HER-2 status in the tumor cells [15]. Digital pathology provides a

cutting-edge solution where algorithms can recognize and select

invasive tumor areas. Even more powerful is the ability to

combine the above pan-tumor detection with

immunohistochemistry (IHC) and ISH studies, considering

the studies on semi-automated HER2 gene amplification

diagnosis made in invasive tumor areas [16].

Colorectal carcinoma is the third most common cancer and

the second most deadly cancer in the world [12]. Endoscopic

submucosal dissection (ESD) is a method that makes an early

diagnosis and treatment of colorectal and gastric neoplasms [17].

ESD maintains its superiority for lesions with superficial

submucosal invasion [18]. The depth of the invasion less than

1,000 µm below the muscularis mucosa is suggested as a cure by

The Japan Gastroenterological Endoscopy Society [19]. The

factors that determine the pathological stage classification of

colorectal cancer are tumor extension in the colonic layers,

lymph node metastasis and tumor deposits, distant metastasis,

tumor budding, lymph vascular invasion, and perineural

invasion, in addition to histological type and grade. With the

help of AI model-assisted analysis, we aimed to identify

prognostic quantitative parameters on colon resection

specimens and integrate the algorithm into our 3D tools

(Micro-CT) to improve the quality of virtual H&E.

Mitotic count in histological preparations is associated with

tumor growth and grading, has prognostic importance [20], and

remains a fundamental part of pathology reports from diagnosis

to treatment in all cancers [21]. Currently, the number of mitotic

cells is determined by manual counting under the microscope,

which is encumbered by inter- and intra-observer variability

[22]. This variability causes not only the rate of variability among

the mitotic counts by pathologists to differ but also contributes to

methodological diversity [23, 24]. Atypical mitotic figures are

frequently seen in proliferative and aggressive tumors and, in

practice, play an important role in the distinction between benign

and malignant tumors [25]. To avoid subjective and laborious

counting of mitoses, and to predict prognosis, we developed an
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AI model to detect mitoses and to distinguish between atypical

and typical mitoses.

In this study, we describe how we have been developing AI

models using Aiforia’s cloud-based AI solutions for breast and

colorectal cancer diagnosis, mitosis detection, and in-house AI

application development for our integration of AI-based

applications and 3D imaging systems.

Materials and methods

Dataset

The studies involving human participants were reviewed

and approved by the Institutional Review Board at Memorial

Sloan Kettering 18-013. The patients provided written

informed consent to participate in this study. Cases were

diagnosed and reported by pathologists at the Department

of Pathology at Memorial Sloan Kettering Cancer Center. In

total, 65 digital slides of 41 ESD specimens diagnosed as low-

grade dysplasia (LGD), high-grade dysplasia (HGD), and

adenocarcinoma, 102 digital slides of 13 colon resection

specimens diagnosed as Mucinous adenocarcinoma for the

Colon Project, 141 digital slides of 141 breast specimens

diagnosed as Breast Invasive carcinoma, 10 digital slides of

10 breast specimens diagnosed as Benign breast parenchyma

for the Breast Project, 40 digital slides of 23 multi-organ tumor

specimens (four spleen Neuroendocrine tumors (NETs), four

pancreatic NETs, five soft tissue-bone tumors, and ten breast

tumors) for the Mitosis Project were used in our study cohort.

In total 358 digital slides were trained (348 digital slides were

used- some of the same slides were trained in different

projects), 158 digital slides were tested, and 49 digital slides

were validated across all projects. The same slides were used

for training in different projects in the colon resection project

(Supplementary Table S1) and some of the slides tested in the

colon ESD and Colon resection Projects were also used for

validation (Table 1).

Sample digitization

All the slides were prepared from archival formalin-fixed

paraffin-embedded (FFPE) tissue blocks sectioned at 4 µm and

stained with Hematoxylin and Eosin (H&E). All H&E slides for

all three projects were digitized by four different scanners by

depending on availability. The first scanner was a Panoramic

P250 (3DHistech Ltd., Budapest, Hungary), which was used with

a ×20 objective (NA 0.8) and a pixel resolution of 0.17 μm. The

second scanner was a Panoramic P1000 (3DHistech Ltd.,

Budapest, Hungary), which was used with a ×40 objective

(NA 0.95) and a pixel resolution of 0.13 μm. The third

scanner was the Aperio GT 450 (Leica Biosystems, Illinois,

United States), which was used at ×40 equivalent

magnification with a pixel resolution of 0.26 μm. The fourth

scanner was a NanoZoomer S60 (Hamamatsu Photonics K.K.,

Shizuoka, Japan) used at ×40 equivalent magnification with a

pixel resolution of 0.23 µm. Especially, in the case of colorectal

samples, whole mount slides, whose size is twice the size of

regular slides, were used and scanned by NanoZoomer S60 and

Panoramic P1000.

Development of the AI model

For AI model development, Aiforia’s cloud-based platform

(Aiforia Technologies, Cambridge, MA, United States) was used.

The AI-model training dataset representing the entire dataset

was carefully selected. These whole slide images were uploaded to

Aiforia’s cloud platform in their native file formats (mrxs, svs, or

ndpi) and automatically converted into platform-compatible file

types. Using the training dataset, AI projects were created, and

TABLE 1 Dataset of each project.

Projects Cases Diagnosis Scanner Total WSI Trained WSI Tested WSI Validated WSI

Mitosis 23 Multiple tumorsa P1000 40 28 8 4 (20)b

Breast-Invasive 141 Invasive carcinoma P250
P1000
GT450

141 59 73 9 (19)

Breast Benign 10 Benign breast tissue GT450 10 — 10 —

Colon-ESD 41 LGD, HGD, Adenocarcinoma S60 65 53 12 5 (30)

Colon-Resection 13 Mucinous adenocarcinoma P1000
S60

102 200c 55 15 (19 × 10) (CRP-1)
16 (20 × 2) (CRP-2)

WSI, whole slide image; ESD, endoscopic submucosal dissection; LGD, Low-Grade Dysplasia; HGD, High-Grade Dysplasia; CRP, Colorectal project.
aFour splenic Neuroendocrine Tumors (NETs), four pancreatic NETs, five soft tissue-bone tumors, and ten breast tumors.
bThe number in the parentheses represents the number of ROIs validated in the WSIs (20 ROIs in 4 images were validated and scored by external validators in the mitosis project).
cColon Resection specimens were prepared as Whole Mount Slides, scanned by S60 and p1000 scanners, and trained, tested, and validated as WMIs. Some of the same slides were trained

for different layers in the project.
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the AI models were custom-designed and presented as a graphic

layer tree. Each layer consists of an individual convolutional

neural network (CNN) that performs a task (segmentation or

object detection) with adjustable parameters, such as field of

view, and resolution of the input patch image. The structure of

the AI models is shown in Figure 1. The Breast Carcinoma AI

model was built with three classes: Tissue, Invasive tumor, and

non-invasive tumor. The invasive tumor area included IHC/ISH

target cells, and the Non-invasive tumor area consisted of tumor

stroma, necrosis, non-neoplastic breast, and non-invasive

lesions. For the Colon ESD project, mucosa, muscularis

mucosa, submucosa, and proper muscle annotations were

added under tissue layer as a child layers. The Colon

Resection Project consisted of five separate projects: 1.

Invasive tumor, 2. Tissue, and Tissue sublayers-1 3. Tissue

sublayers 2 “Dark Tissue and Light Tissue” [Light Tissue

represents the Subserosa layer of the colon, and Dark tissue

represents all the other layers of the colon (mucosa, submucosa,

and muscularis propria). Dark and Light Tissues were created to

make a reliable distinction between subserosa and serosa and

other layers to avoid false positives of subserosa in the submucosa

layer because of the similarity of histomorphology], 4. Mucosal

Subregions (Mucosa, Submucosa, Muscularis mucosa), 5.

Vessels, and Lymph nodes. Supplementary Table S1 shows the

trained WSI dataset for each Colon Resection Project. The same

whole mount slide images were taught separately for all five

TABLE 2 Breast project verification and validation results.

Precision (%) Sensitivity (%) F1 score (%) Area error (%)

Tissue 99.60 99.34 99.47 0.26

Invasive 92.26 96.84 94.49 1.12

Non-invasive 99.65 98.73 99.19 1.45

FIGURE 1
Hierarchical layered structure of AI models. Yellow colors represent each child layer. White colors correspond to the analytical results shown in
the results session. User-adjustable parameters on the Aiforia platform are listed below the layer boxes. Augmentationwas utilized to further improve
the AI model as needed.
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separate projects. Ultimately, we made two projects. Only the

Vessels and Lymph node Project was separated from the others.

The algorithm consisted of three layers and four classes: 1-Tissue,

2-Mitosis, 3a-Atypical Mitosis, and 3b-Typical Mitosis for the

Mitosis Project. Object detection was used for the mitosis,

atypical mitosis, and typical mitosis layers. The mitosis layer

was built to exclude mitosis mimics like apoptosis, necrotic

tumor cells, stromal cells, etc. Annotations were made by a

pathologist for each classifier in all three projects (Figure 2).

Supplementary Table S2 shows the number of total semantic

segmentation areas and objects that were annotated for each

project and each layer.

Image analysis by an AI model was hierarchically conducted

from the top layer to the final layer. In the case of our mitosis

project, the first layer was designed as a binary semantic

segmentation model that detects tissue regions. The second

layer was an object detection model that counted mitosis

within the tissue regions identified by the first layer. Finally,

the detected mitotic cells were classified into typical and atypical

by the third layer.

The accuracy of the trained AImodel was calculated based on

verification statistics, which were derived from the comparison of

the AI-model predictions to the original input training

annotations for each feature (false positive, false negative, total

error, precision, sensitivity, and F1-Score). The F1 score is a

statistical measure utilized to quantify the degree of overlap

between two data sets [26] and represents the harmonic

average of precision and sensitivity. If the area error was

higher than 5%, and the confidence was less than 80%, the

tested results were evaluated, then annotations were added or

modified by a pathologist, and the AI model was retrained. These

test-to-retrain processes were repeated until all layers reached

satisfactory accuracy.

Training, testing, and validation

In view of our future projects, all annotations were made

by a pathologist, after AI models were created according to the

corresponding pathological histological structures. The size

and number of annotations were decided by the application

specialist and pathologist together in each training round and

proceeded accordingly. The cloud-based platform provided

results in the “Verification and Validation” tool in comparison

to the human-generated annotations, after the analysis. The

results included false positives (regions that were annotated,

and were found in the verification); percentage of the total

area of all training regions-detection of non-invasive areas as

invasive tumors in breast and colon tumors, false negatives

(regions that were annotated and were not found in the

verification), percentage of the total area of all training

regions-undetected invasive areas, precision (space-

dependent overlap of analysis results with human

annotations), sensitivity (space-independent overlap of

analysis results with annotations), and F measure (the

harmonic mean of precision and sensitivity).

FIGURE 2
An example of training regions and training annotations (A–I). First row from left to right: (A–E), second row from left to right: (F–J). (A):
Location type annotation of colonic layers, (B): Colon mucosa layers annotations, (C, D): Colon invasive carcinoma annotations (E): Whole shape
lymph node and vessel annotations (F–H): Atypical and typical mitosis annotations (Red: atypical; Blue typical) (I): Mitosis annotation (J): Breast
invasive carcinoma annotation [(A–E, J) are semantic segmentation annotations, (F–H) are object annotations].
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When the AI models achieved satisfactory accuracy, we

released the latest models and tested them on untrained

images. If the results were not sufficiently accurate, we did not

release the model and kept training. Our criteria for success was

to reach at least 90% of the F1 score. Once we reached satisfactory

accuracy according to ground-truth pathologists the area error

was less than 5% and the confidence was more than 80% for the

AI models, with the validators agreeing on at least “very good”

accuracy; therefore, we stopped training. All results were

exported to be used as annotations for our applications.

Validators were invited to evaluate the results and rate the

accuracy of the AI model for each project. Three pathologists

were used for the evaluation of specific ROIs for each breast,

mitosis, and colon project (Merve Basar, Irem Isgor, and Hulya

Sahin Ozturk). They scored each feature blindly and

independently of each other and the AI model. The validators

evaluated the analysis results as a percentage with the

classification, which we divided into four categories. The

features of the segmentation area were rated for accuracy

using the following scale: 1. Perfect or nearly perfect accuracy

(95%–100%, no significant errors) 2. Very good accuracy (80%–

95%, only minor errors) 3. Good accuracy (70%–80%, significant

errors but still capturing the feature well) 4. Insufficient accuracy

(less than 70%, significant errors compromising feature

recognition).

Results

Breast project

After four runs, our final training results for the breast project

were 0.10% false positive, and 0.16% false negative for the tissue

layer, 0.56% false positive, and 0.73% false negative for invasive

and non-invasive layers. Table 2 shows the results for each layer

of the Breast Project, and Figure 3 shows the image analysis

results for invasive carcinoma.

External validator results of breast project
In total, 9 untrained images including 19 ROIs were sent to

three pathologists. The external validator results showed that

rating scores for invasive carcinoma (2) were in the range of

“very good,” for tissue (1.1) and for non-invasive (1.9) were in

the range of “very good” to “perfect or nearly perfect”

(Figure 4). However, the median values were Score 1

(Perfect or nearly perfect accuracy) for Tissue and Invasive

tumors and Score 2 (Very good accuracy) for Non-

invasive layers.

Colon ESD project

The final AI model results were 0.18% total area error,

0.12% false positivity, 0.06% false negativity, 99.36%

precision, 99.71% sensitivity, and 99.54% F1 score

for tissue class, 3.47% total area error, 0.36% false

positivity, 0.51% false negativity, 96.74% precision, 95.42%

sensitivity, 96.08%, F1 score, and 0.87% area error for tissue

subregions. By looking a Table 3 we can see the other results

for each layer.

External validator results of the colon
ESD project

This AI model was validated by three reviewers.

Specifically, the reviewers were asked to draw annotations

on the 30 validation regions. Their annotations were

TABLE 3 Colon ESD project tissue sublayers verification and validation results.

Precision (%) Sensitivity (%) F1 score (%) Area error (%)

Mucosa 96.80 97.47 97.13 1.40

Muscularis mucosa 84.65 84.63 84.64 0.56

Submucosa 98.06 92.98 95.46 1.41

Proper muscle 97.04 99.11 98.06 0.09

TABLE 4 Mitosis project verification and validation results.

Precision (%) Sensitivity (%) F1 score (%) Area error (%)

Tissue 99.59 99.79 99.69 0.16

Total mitosis 67.85 97.97 80.18 0.17

Typical mitosis 97.74 97.07 97.40

Atypical mitosis 98.18 97.19 97.68
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compared using intersection-over-union analysis against the

AI model, on a pixel-by-pixel basis. Once the AI model

performance reached 80% confidence, it was used to

analyze the remaining 27 WSIs from the dataset. The final

AI model showed a false positive rate of 0.18%, a false

negative rate of 0.29%, a precision of 97.41%, a sensitivity

of 95.89%, and an F1 score of 96.65%, respectively. External

validation showed a false positive rate of 0.15%, a false

negative rate of 0.058%, a precision of 92.01%, a sensitivity

of 95.91%, and an F1 score of 97.57%, respectively. The image

analysis generated by the final AI model showed correct

discrimination of each layer with high confidence (Figure 5).

FIGURE 3
Breast Project results [From left to right (A–D)]. (A, C) are untrained images. (A) includes selected ROI (black line) for validation. (B, D) are image
analysis results. (B): Invasive tumor detection (blue) in selected ROI, (D): The non-invasive region consisting of benign mammary glands and the
invasive tumor detection (blue) are shown together.

FIGURE 4
Breast carcinoma project external validator results. The evaluation of tissue, non-invasive, and invasive carcinoma detection in breast
carcinoma cases by three pathologists. Segmentation area features were rated for accuracy using the following scale: 1. Perfect or nearly perfect
accuracy (95%–100%, no significant errors) 2. Very good accuracy (80%–95%, only minor errors) 3. Good accuracy (70%–80%, significant errors but
still captures the feature well) 4. Insufficient accuracy (less than 70%, significant errors compromising feature recognition). The average value for
tissue and invasive carcinoma detection is in the range of 1 (Perfect or nearly perfect accuracy), and non-invasive layer detection is in the range of 2
(very good accuracy).
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Colon resection projects

All layers showed over 90% F1-scores. Supplementary Table S3

shows the performance of the final AImodel results for each layer and

their child layers compared to the original annotations for the colon

resection project. Figure 6 shows all detected layers by the AI models.

External validator results of the colon resection
project_1

In total, 15 images and 19 ROIs were evaluated for Colon

Resection Project_1 by three experienced pathologists. The

results showed that the rating scores for tissue (1.12), dark

tissue (1.47), light tissue (1.56), mucosa (1.91), muscularis

FIGURE 5
Tissue and subregion recognition feature of the ESD specimens by AI model (A–C). (A): An original H&E stain (×20magnification) showing low-
grade dysplasia in a colon ESD specimen; (B) and automated tissue (yellow) and (C) and automated colonic layer segmentation (mucosa: blue,
muscularis mucosa: red, submucosa: green) original magnification [(B, C), ×20].

FIGURE 6
Colon resection project steps and image Analysis results (A–J). First row from left to right (A–D), Second row from left to right (E–H), Third row
from left to right (I–L). (A): Original whole slide image H&E stain (×20magnification), (B): Tissue detection (Green) (C): Light and dark tissue detection
[Light tissue (Subserosa and serosa): Light green, Dark tissue (muscular propria, submucosa, andmucosa): Purple] (D): Subserosa and serosa (green),
muscularis propria (red), submucosa (yellow), mucosa (purple) detection (E, F): Mucosa subregions detection: Epithelium (Purple), Lamina
propria (Yellow),muscularismucosa (Brown) (G, H): Vessel and lymph node detection (Red: Vessels, Blue: Lymph nodes) (I): Invasive tumor detection
(Blue) (J): Metastatic lymph node and tumor focus in subserosa H&E, (K, L): Invasive tumor detection (Blue) in metastatic lymph node and serosal
fat tissue.
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FIGURE 7
Colon Resection Project-1 External Validators Results. Scoring of all layers by three pathologists. Segmentation area features were rated for
accuracy using the following scale: 1. Perfect or nearly perfect accuracy (95%–100%, no significant errors) 2. Very good accuracy (80%–95%, only
minor errors) 3. Good accuracy (70%–80%, significant errors but still captures the feature well) 4. Insufficient accuracy (less than 70%, significant
errors compromising feature recognition). The median value of vessel and lymph node detection is in the range of 1(Perfect or nearly
perfect accuracy).

FIGURE 8
Colon Resection Project-2 external validators results. Evaluation of vessel and lymph node detection by three pathologists. Segmentation area
features were rated for accuracy using the following scale: 1. Perfect or nearly perfect accuracy (95%–100%, no significant errors) 2. Very good
accuracy (80%–95%, onlyminor errors) 3. Good accuracy (70%–80%, significant errors but still captures the featurewell) 4. Insufficient accuracy (less
than 70%, significant errors compromising feature recognition). The median value of vessel and lymph node detection is in the range of 1
(Perfect or nearly perfect accuracy).
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propria (1.77), the epithelium (1.71), lamina propria (1.61),

muscularis mucosa (1.54), and invasive carcinoma (1.84), were

in the “perfect or nearly perfect” range and submucosa (2.15) was

in the “very good” range (Figure 7). The most frequently assigned

score in terms of average and median value was Score 1 (Perfect

or nearly perfect) for all layers.

External validator results of the colon resection
project_2

For each vessel and lymph node project, 16 images

and 20 ROIs were evaluated by three experienced

pathologists. The external validator results showed that

the rating scores for vessels (1.9) and lymph nodes (1.4)

were in the “perfect or nearly perfect” range. The most

frequently assigned score in terms of average and median

value was Score 1 (Perfect or nearly perfect

accuracy) (Figure 8).

Mitosis project

Atypical and typical mitosis layers showed over 97% F1-

scores. Table 4 shows the results of the mitosis project tree for

each layer and class. The algorithm captured both typical and

atypical mitotic figures (Figure 9).

External validator results of the mitosis project
Three pathologists evaluated 20 carefully selected ROIs

in 4 WSIs. The external validator results showed that

the rating scores for tissue (1) were in the “perfect or

nearly perfect” range, but mitosis (2.83), atypical mitosis

(2.45), and typical mitosis (2.5) were rated between “good

and very good” accuracy. The highest score given by the three

pathologists on average was 2 (Very good accuracy) for the

Mitosis layer, Atypical Mitosis, and Typical Mitosis, and 1

(Perfect accuracy) for the Tissue layer. Therefore, the

evaluation of all external validators as “total mitosis,

atypical, and typical mitosis detection by AI” was classified

in the “Very good” range. The validators agreed that AI

could detect mitosis with at least 80%–95%

accuracy (Figure 10).

Discussion

AI models were built by pathologists with the help of

application specialists, depending on the significant findings of

histomorphology for each tissue. Models were trained and tested

individually until the application reached reliability according to

its own standards determined by pathologists, and then models

include selected specific ROIs shared with validators (external

pathologists) for validation. Finally, external pathologists who

evaluated the models rated each model as having at least very

good accuracy (80%–95%, only minor errors). Our findings

showed that we were able to extract clinically relevant

information from H&E slides with neural networks in line

with the literature [2, 27]. AI algorithms exist in the literature

that show that all tiles in each heatmap were assigned as hotspots

for cancer detection [28] or any other histologic parameters [29].

Instead of using hot spots to recognize objects or segments, the

algorithm we employed in our study displays the entire picture of

histomorphology with extremely clear boundaries. It also

examined each learned layer by separating it from other areas

that the pathologists are not interested in. To use an example,

children’s painting styles in coloring books vary according to

their age. As they age, the frequency of coloring outside the lines

in a coloring book rises. Through advanced analyses, our

algorithm makes it possible to add molecular studies into

FIGURE 9
Detection of total mitosis, atypical and typical mitosis [From left to right (A–C)]. (A): H&E, Invasive carcinoma breast, Selected ROI, (B): Atypical
and typical mitosis (C): Detection of mitosis (Light Blue), Atypical mitosis (Red Circle) and Typical mitosis (Dark Blue Circle). IA, Image analysis; H&E,
hematoxylin, and eosin.
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these more accurate sharp boundaries in future projects, such as

our breast project, in accordance with its morphology analyses.

In the Breast project, 59 images were trained with

18,777 iterations, the CNN complexity was set to extra

complex, and the field of view was 100 µm. False positive

areas consisted of desmoplastic tumor stroma, proliferative

endothelial cells, and some empty spaces in tumor clusters.

The location of false positive areas in the algorithm was the in

situ area. In total, 54 untrained images and 10 benign breast

tissues were tested by the final model of AI. In the benign

10 breast tissue images the false positive detection of invasive

carcinoma ranged from 0.02% to 1.48%. Some groups of cells

with hyperchromatic nuclei and areas of adenosis were detected

as invasive carcinoma at an average rate of 1%. Considering that

there are areas of cancer that can be detected by AI that may be

overlooked by pathologists in some studies [30], it appears that

this rate can be reduced to 0% in future studies. While two

pathologists evaluated the diagnosis of invasive carcinoma by AI

as nearly perfect (95%–100% accuracy) in all ROIs, the 3rd

pathologist focused on Score 2 (80%–95% accuracy) in this

evaluation. We checked and learned that the two validators

who scored in a similar way were trained in the same medical

school, whereas the third pathologist was educated in a different

medical school. This is a good example of the need for artificial

intelligence, which can provide an objective solution to the

subjective perspective gained through education while making

the diagnosis. Ultimately, three pathologists agreed that AI can

detect breast-invasive tumors with at least 80%–95% accuracy.

Three different scanners were used for breast carcinoma, but

we could not get satisfactory results due to low-quality images.

We used image augmentation tools, but it was not enough. These

images needed more annotations to detect invasive carcinoma

areas compared to images from other scanners. Our results show

that scanner and image quality affect the detection by AI, but we

know it is fixable if we teach the AI when the resolution changes.

Cross-verification of different scanners and different resolutions

is beyond the scope of this publication. We need the AI to

function for all images of our scanner lineup, but the AI

algorithm is not required to support all scanners except our

own in this study, as we used available scanners in real-world

situations and it was sufficient to create accurate models and

verify the results. For the mitosis detection model, we did not

use 20× magnification (0.5 um/pixel resolution). We trained the

AI until it could understand all formats. We see the potential for

future evaluation between scanners and resolutions with the goal

of AI becoming more objective and supporting all digital

platforms to make a more accurate diagnosis.

Although the muscularis mucosa is a sublayer of the mucosa,

it was used as a separate layer from the mucosa in the ESD Project

due to its importance in terms of depth of invasion. However,

when the results of the tissue and mucosa layers were examined

after 53 images were trained, only the F1 score of the muscularis

FIGURE 10
Mitosis project external validators results. Evaluation of tissue, mitosis, atypical and typical mitosis detection by three pathologists.
Segmentation area features were rated for accuracy using the following scale: 1. Perfect or nearly perfect accuracy (95%–100%, no significant errors)
2. Very good accuracy (80%–95%, only minor errors) 3. Good accuracy (70%–80%, significant errors but still captures the feature well) 4. Insufficient
accuracy (less than 70%, significant errors compromising feature recognition). The average value for tissue is in the range of 1 (Perfect or nearly
perfect accuracy), and the detection of mitosis, atypical mitosis, and typical mitosis is in the range of 2 (very good accuracy).
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mucosa was less than 90% (84%). As for the colon resection

project, the F1 scores of all colon project layers, including the

muscularis mucosa, were above 90%. The differences were as

follows: the ESD project was the only project where the

evaluators made their own annotations (they were not

pathologists), the colon resection project was created and

trained by the pathologist for histologically correct positioning

of the muscularis mucosa, andmore importantly, the trained area

was 36 times larger (Supplementary Table S2). A pathologist is

vital to the success of the digital image analysis project, as the

denotative analysis algorithm could not have been invented

without their specialized expertise [31].

In the colon resection project tissue detection was as good as

in the breast and ESD projects. The AI was able to detect any type

of tissue layer, regardless of which organ it belonged to. In terms

of accuracy, only the submucosal layer detection scoring was in

the range between very good and good accuracy, while the other

layers in the colon resection project were in the range of perfect

accuracy. The vascular structures and loose connective tissue

histology of the submucosa and subserosa are the same. Due to

this similarity, we obtained false positive and false negative

results in the separation of the two layers. To eliminate this

overlap and confusion, we divided the colonic layers into two

categories: light tissues as subserosa and dark tissues as other

layers. Although we separated the subserosa from the submucosa,

there were still negative areas and missing parts in the

submucosal layer of the colon. However, it was satisfactory

that we achieved high accuracy in the subserosa layer, which

has an important place in prognosis and staging in the context of

understanding tumor infiltration, detecting vascular invasion,

and catching metastatic lymph nodes, and tumor deposits.

In total, 22 images were trained with 5,000 iterations, with

CNN complexity set to extra complex and 50 µm field of view

in the invasive carcinoma detection in the colon project. After

5 runs we reached the accurate analysis results. In the first

model, false positive cells were located in normal mucosa. We

changed the FOV (50 µm) and complexity (extra) by

comparing the false positive areas between the AI models.

With a lower FOV (200 µm) and complexity (very), fewer false

positive cells were detected in normal mucosa. In the new

model, false positives were found in the tumor stroma and

lumen, and AI was able to separate the invasive tumor region

from the non-invasive region.

The results of the lymph nodes and vessels project showed

high accuracy in identifying vessels and lymph nodes. We used

whole shape annotations to train for vessels and lymph nodes in

the subserosa and serosa layers. The results showed that the

detection was nearly perfect. The challenge for AI was that the

muscularis propria layer also consisted of muscles like the vessel

walls. In addition, we tried to do annotations with all the

construction drawings for vessels. The handicap for lymph

node identification was the difficulty in distinguishing

epithelial cells in the mucosa. However, by using high

iterations and adding background annotations, we fixed the

majority of these problems in 4–5 training rounds, and the

true positive rates became quite high.

Mitotic counting is a time-consuming process in pathology

reporting, but it is just as important in nearly all carcinoma

types to determine grade and prognosis. Even when counted

again by the pathologist, there is a difference in mitotic rates,

while it is an indisputable fact that this difference between

pathologists is obvious [32]. We would like to implement

clinical to count mitosis for pathologists to help to avoid

time consuming processes. It is important to determine the

best area for mitotic counting. A study showed that the use of

High Power Fields (HPF) should be abandoned and replaced by

standardized international (SI) units; the use of square

millimeters (mm2) provides a properly standardized unit for

area measurement, and the calculation of mitosis per mm2

becomes easier. The data obtained are not related to the

microscope and magnification used [33]. The article cited

referred to digital platforms that facilitate the development

of mitotic counting algorithms that use the evaluation of the

entire tumor, as in our algorithm, indicating that we can

measure the mitotic index only in certain tumor types more

accurately and find new ways to classify tumors. An AI

application that will standardize the mitotic rate is very

important for pathologists and other clinicians to determine

treatment. In a recent study, a semi-automated image

processing algorithm generated datasets directly from H&E

and pHH3-stained tile images with a new U-Net-based

mitosis detection model that learned mitotic features from

annotated images proposed in a simple and highly efficient

way according to classical methods without performing

annotations [34]. The segmentation model was re-trained for

the confusing cells called mitosis look-alikes (MLAs) to reduce

false positives. In our study, the mitotic layer was the only layer

with an F1 score below 90% in all projects. The mitotic layer was

added later to the detection of atypical and typical mitotic

objects to exclude artifacts. The aim was to reach an F1 score of

90% for atypical and typical mitosis. However, mitosis training

was discontinued when accuracy in distinguishing atypical and

typical mitosis increased. It should be recognized that it is not

easy for AI to detect mitosis due to it being confused with dark

hyperchromatic nuclei, lymphocytes, and other inflammatory

cells, artifacts, pigments, and crushed cells [25]. However, the

detection of atypical and typically distinctive mitosis offered an

above-average detection rate in our study. One of our future

plans is to define prognostic differences between atypical and

typical mitotic counts and/or to determine whether there are

any effects between these two classes in determining staging or

grading in cancer types, specifically pancreatic cancer [35].

Another plan is to provide a measurement of mitotic count,

rate, and index using mitosis detection by AI. Our shortcoming

in this project, which serves as a step toward new research, was

that we needed more data.
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Additionally, as a part of future work, we exported the analysis

results from the Aiforia platform to an image server in a JSON

format. Because the exported files contain only coordinates of an

outline of segmented or detected regions, each region was

reconstructed on the local computer by our software, which

confirmed that the segmentation results could be successfully

reconstructed on the local computer. Based on this result, the

analysis result obtained by the AI developed on the Aiforia

platform may be used on other applications. For example, in

the case of the breast cancer assessment, immunohistochemistry

(IHC) and fluorescence and bright field in situ hybridization (ISH)

slides are used together with H&E slides to determine the human

epidermal growth factor receptor 2 (HER2) status. If invasive areas

are automatically identified on H&E images by an AI model, an

additional in-house machine-learning-based image analysis

application may help in the subsequent assessment of IHC, and

ISH images. This would reduce manual tedious operations and

replace the assessment from subjective to objective. In addition, if

AI accomplishes adequate accuracy on the Aiforia platform, these

results may be used as annotations for additional development of

in-house image analysis algorithms and/or AI models.

Some of our 3D pathology imaging applications use micro-

computed tomography (Micro CT) to scan entire FFPE blocks

or resected tissue non-destructively. Whole Block Imaging

(WBI) and Whole Tissue Imaging (WTI) by a Micro-CT

scanner are novel non-invasive imaging techniques that

detect histomorphological features [36]. A recent study

proposed 3D vessel detection using a deep neural network

for micro-CT images. In addition to vessel detection, the

purpose of the study was to detect tumor lesions, measure

tumor invasion depth, and identify metastatic lymph nodes

[37]. To improve the efficiency of this processing, it is necessary

to integrate all the functions by applying methods such as ours,

which were created for the Colon Project. We believe that by

using AI-cloud-based platforms, we will be able to reach at least

80% accuracy for histomorphological features of samples,

which will allow us to be able to integrate the 3D imaging

tools and provide a broad spectrum, giving the pathologist the

freedom to use all the tools in the process of achieving the most

accurate diagnosis.

Currently, 3D imaging, and image analysis applications are

highly desired. Some research groups have proposed machine-

learning-based 3D analysis applications and the complexity of

annotation has been pointed out as an important problem. In

particular manual annotations of hundreds of serial sections of

the same block is an extremely time-consuming and laborious

task. If the developed AI model works on 3D imaging modalities

such as micro-computed tomography or light sheet microscopy,

we will develop an efficient AI model for 3D image analysis more

easily. It should be kept in mind that specific cross- or

multimodal image analysis strategies are required to

seamlessly implement the deployment of 3D imaging devices

and their integration with H&E images.

Conclusion

This study aimed to develop a deep-learning segmentation

algorithm that can define invasive carcinomas in the breast and

colon, identify colonic layers in colon specimens, and distinguish

between atypical and typical mitoses. The final step was to

validate the output against interpretations by a pathologist

and in an independent test cohort and finally to use the

algorithm as an application in our software programs.

Our developed AI models showed excellent performance for

tissue detection in all organ types. The AI models identified

tumor areas well even in the presence of different tumor grades

and in situ areas, in breast carcinomas, detected the invasive

carcinoma and colonic layers, and recognized vessels and lymph

nodes in colon specimens.

We will continue to create a new project for colorectal

carcinoma resection specimens to teach AI to define

prognostically significant findings in whole-mount images to

apply it to Whole block 3D imaging and use the exported data

from breast carcinomas to achieve the IHC/ISH assessment system.
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