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Lung cancer is a leading cause of cancer-related death worldwide in both men

and women, however mortality in the US and EU are recently declining in

parallel with the gradual cut of smoking prevalence. Consequently, the relative

frequency of adenocarcinoma increased while that of squamous and small cell

carcinomas declined. During the last two decades a plethora of targeted drug

therapies have appeared for the treatment of metastasizing non-small cell lung

carcinomas (NSCLC). Personalized oncology aims to precisely match patients

to treatments with the highest potential of success. Extensive research is done

to introduce biomarkers which can predict the effectiveness of a specific

targeted therapeutic approach. The EGFR signaling pathway includes several

sufficient targets for the treatment of human cancers including NSCLC. Lung

adenocarcinoma may harbor both activating and resistance mutations of the

EGFR gene, and further, mutations of KRAS and BRAF oncogenes. Less frequent

but targetable genetic alterations include ALK, ROS1, RET gene rearrangements,

and various alterations of MET proto-oncogene. In addition, the importance of

anti-tumor immunity and of tumor microenvironment has become evident

recently. Accumulation of mutations generally trigger tumor specific immune

defense, but immune protection may be upregulated as an aggressive feature.

The blockade of immune checkpoints results in potential reactivation of tumor

cell killing and induces significant tumor regression in various tumor types, such

as lung carcinoma. Therapeutic responses to anti PD1-PD-L1 treatment may

correlate with the expression of PD-L1 by tumor cells. Due to the wide range of

diagnostic and predictive features in lung cancer a plenty of tests are required

from a single small biopsy or cytology specimen, which is challenged by major

issues of sample quantity and quality. Thus, the efficacy of biomarker testing

should be warranted by standardized policy and optimal material usage. In this

review we aim to discuss major targeted therapy-related biomarkers in NSCLC

and testing possibilities comprehensively.
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Introduction

Primary lung cancer used to be a rare tumor in the past,

however today it is the most common cause of cancer

mortality worldwide. In 2020, lung carcinoma was the

second most common malignancy, with around 2.2 million

newly diagnosed cases. Moreover, with 1.796 million cases, it

was the number one cause of cancer deaths [1]. The incidence

in both of US and EU is now declining, that follows the trend

of shrinking smoking prevalence [2]. The incidence rate in

male patients increased from 1973 to 1984 (83.5 and 97.9/

100,000 person-years, respectively) followed by a gradual

decrease till 2015 (55.3/100,000 person-years), while in

female patients the incidence increased in a more extended

period from 1973 to 2007 (20.2–51.3/100,000 person-years)

and then subsequently decreased to 2015 (44.2/

100,000 person-years). The trend in the incidence of lung

carcinoma in men in Central Europe is similar to that seen in

Western countries, but with a slight delay. Unfortunately,

according to the latest data, the incidence of lung cancer is still

rising in women [3].

About 85% of lung cancer cases are non-small cell carcinoma,

the remaining 15% belong to the clinically separate category of

small cell carcinoma. The group of non-small cell carcinomas is

further subdivided as adenocarcinoma, squamous cell

carcinoma, large cell carcinoma, and several other relatively

rare histological types [4]. The relative frequency of

histological types of lung carcinoma has also changed

significantly in recent decades. In the past the squamous cell

carcinoma was the most common type of lung cancer but their

relative frequency declined and the general occurrence of

adenocarcinoma increased. Today, adenocarcinoma is the

most common type, accounting for about 50%–56% of all

lung cancer cases and is the most frequent histological

subtype in never-smokers [5]. Increased risk of

adenocarcinoma in smokers is a result of changes in design

and composition of tobacco products. The introduction of

ventillated filters in cigarettes and the increased levels of

tobacco-specific nitrosamines both have played a role [6–10].

The decline of squamous cell carcinoma follows the trend of

declining smoking prevalence in industrialized countries [2].

As incidence and mortality data indicate, lung cancer is one

of the most aggressive cancers and has an unfavorable outcome.

Classical treatment options for lung cancer include surgical

resection or chemo- and radiotherapy, depending on clinic-

pathological variables. For patients with early-stage lung

cancer, surgical resection is the optimal treatment option,

while patients with locally advanced or metastatic NSCLC and

most SCLC patients are treated with chemo-radiotherapy.

However, in the last decades, significant progress has been

made in understanding the molecular pathogenesis of lung

tumours, both NSCLC and SCLC groups. Even SCLC, which

was previously thought to be uniform, has been shown by recent

data to be divided into at least 4 distinct molecular

subgroups [11].

Thanks to the massive increase in genetic and immunological

knowledge the variety of treatment methods has also shifted over

the decades. Therapeutic targeting of the EGF-receptor

introduced the era of biological therapies, and a growing list

of specifically acting agents is now effectively used in selected

cancer patients. So-called oncogene-addicted NSCLC is a

molecular genetically distinct group of lung cancers in which

well-defined driver mutations direct the pathogenesis, and

pharmacological blockade of this target is expected to result in

a significant therapeutic response. These patients also form a

clinically well-defined group, mostly non-smokers, female

predominance, and a relatively younger age are the main

characteristics.

The frequency of currently known clinically significant driver

gene defects is shown in Figure 1.

In addition, another group of lung tumours is also emerging,

lacking targetable driver mutations to our present knowledge.

However, due to marked immunogenicity, these patients may

well benefit from immune checkpoint inhibitor therapies [12].

The introduction of molecularly targeted therapies promise a

major advance, however lung cancer still has a poor prognosis

and the 5-year survival rate remains at a very low level, the 5-year

OS was 10.7 in 1973 for all lung cancer patients, which increased

to 19.8% in 2010 [13, 14]. As seen in Western countries, survival

rates for lung cancer patients in Central Europe have improved

over the past decade, particularly after the introduction of

immunotherapy. For non-squamous NSCLC, the 3-year

survival in 2019 was 28.7% compared to 14.5% in 2011, and

for squamous cell carcinoma 22.3% versus 13.37%.

Unfortunately, for SCLC, there was no significant

improvement over the study period [15].

The emergence of new molecular targets has also challenged

diagnostic pathology by requiring the identification of

appropriate predictive biomarkers and by the development of

reliable, cost-effective testing options.

In this study, we aim to review the main events in the

molecular pathogenesis of NSCLC also serving as therapeutic

targets. Furthermore, we aim to present the status of biomarker

testing options.

Gene mutations and copy
number changes

EGFR mutations

Adenocarcinomas harbor mutations of genes of EGFR

signaling pathway. EGFR belongs to the epidermal growth

factor RTK (receptor tyrosine kinase) family. The EGF

receptor has an extracellular ligand-binding, a transmembrane

and an intracellular domain, the latter having tyrosine kinase

Pathology & Oncology Research Published by Frontiers02

Tóth et al. 10.3389/pore.2024.1611733

https://doi.org/10.3389/pore.2024.1611733


activity. The intracellular protein kinase domain contains a small

N-terminal lobe and a larger C-terminal lobe. The two parts form

the active site cleft that serves as a binding site for ATP. In

physiological conditions the extracellular ligand binding (EGF)

activates the receptor and the downstream signaling results in

cellular transactivation, cell proliferation and survival.

The use of the EGFR receptor as a potential therapeutic target

was already suggested in the 1980s by Mendelshon and

colleagues [16, 17]. As in many other tumors, EGFR

expression has been shown to be increased in lung

adenocarcinomas, an early event in carcinogenesis [18]. In

2002, the first data on an EGFR inhibitor treatment in

NSCLC were published [19, 20]. The first clinical results

showed considerable variability in the response rate [21, 22].

Benefits were mostly observed in non-smokers, women and in

the Far Eastern population. The level of EGFR expression

detected by immunohistochemistry has not been shown to be

of predictive value [23, 24]. Mutations in EGFR were first

identified in 2004 and have also been associated with response

to therapy [25–27]. All the detected genetic abnormalities were

FIGURE 1
(A) Significant driver gene defects frequency- Asian population. (B) Significant driver gene defects frequency- Caucasian population.
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heterozygous, and wild-type EGFR was found in normal lung

tissue adjacent to the tumor, suggesting that these mutations are

somatic [25]. The EGFR mutation could also be detected in the

benign epithelium surrounding the tumor, demonstrating that it

is an early event in carcinogenesis [28]. Mutations were

demonstrated to affect the kinase domain of the receptor

protein causing constitutive activation and downstream

signaling in the absence of the receptor ligand. Women and

never-smokers were preferentially involved. EGFR mutations

show ethnic differences, prevalence ranges 10%–15% in

Caucasians and 30%–40% in Asians [29]. Genetic alterations

of other major oncogenes, such as KRAS, ALK, ROS1 are

mutually exclusive with EGFR mutations. Among

adenocarcinomas EGFR mutations are frequently detected in

cases with lepidic and papillary growth patterns. The two most

common mutations, the so called classical EGFR mutations are i)

mutation at codon 858, replacing leucine 858 with arginine

(L858R) and ii) the in-frame deletion in exon 19 causing

removal of amino-acid residues 746–750 of the expressed

protein [30]. These two mutations account for 85%–90% of all

EGFR mutations.

Both classical EGFR mutations affect the kinase domain.

In the inactive form of the wild-type EGFR molecule an

outward rotation of the alphaC helix in the N lobe is

provided, which is stabilized by the helical turn of the

A-loop. This conformation inhibits the association of

amino acids K745 with E762 and the consecutive binding

and orientation of ATP. The L858R mutation occurs in the C

lobe N-terminal portion of the activation loop resulting the

destabilization of the inactive state thereby promoting the

conversion in a more active state [31, 32]. The deletion in exon

19 (746ELREA750) occurs immediately before the αC-helix in
the N lobe and desrupts the inactive conformation through the

shortening of the alpha C loop. The L858R mutant is

approximately 50-fold more active than the wild-type

enzyme, and the G719S mutant shows about ten times

more activity over the wild-type.

In addition to the classic mutations mentioned above (L858R

and del19), about 600 other rare EGFR mutations have been

described, accounting for about 10%–15% of all EGFR mutations

[33]. These include exon 18 E709x, del18, G719x,

exon19 insertion, exon20 insertion, and S768I, as well as

L861Q affecting exon21. Of these, exon 20 insertions are the

most common (4%–10% of all EGFR mutations).

The relative frequency of EGFR mutations based on the

COSMIC database is shown in Figure 2 [34].

EGFR mutations show variable sensitivity to EGFR tyrosine

kinase inhibition. The specific genotype obtained by DNA

sequencing gains special importance as the type of mutation

carries the basic potential of resistance to given inhibitor agents.

It is of note that resistance or low response to TKI today indicates

the consideration of an alternative inhibitor. No response to

EGFR TKI treatment has been observed in case of exon

20 insertions [35] except A763-Y764insFQEA [36–38]. For

others, the therapeutic effect is less than observed for the

classical mutations, e.g., G719x, exon 19 insertions, S768I,

L861Q. For these mutations 2nd generation TKI treatment

may show improved results.

FIGURE 2
The relative frequency of EGFR mutations.
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Germline mutations of the EGFR gene were also described

[39], which, if present, increase the incidence of adenocarcinoma,

mostly in the presence of additional somatic mutations. The

4 most common germline mutations are T790M (which is one of

the most important causes of acquired TKI resistance), V843I,

R776H, P848L, all point mutations.

An EGFR activating mutation is a prognostic factor

indicating unfavorable outcome. On the other hand, it is a

factor predicting the response to tyrosin kinase inhibitor

treatment. T790M mutations and mutations in exon 20 are

associated with resistance to tyrosin kinase inhibitors.

Although EGFR-TKI treatment has been shown to be

effective in most patients with EGFR mutant lung

adenocarcinomas, no response is observed in 5%–25% of

patients due to intrinsic resistance to these drugs. In

addition to the pharmacokinetic complications of the drug,

intrinsic resistance is frequently due to some genetic variation.

These include most of the exon20 insertions, with the exception

of A763-Y764insFQEA- [36–38], T790M, exon 2-7 variant

III(vIII) in frame deletion [40] and some other secondary

genetic events.

Patients with an initially good therapeutic response may

show unfortunate disease progression after 9–19 months of

treatment initialization due to acquired resistance (first line

TKI: 9–12 months, 19 months first line third generation TKI)

[41, 42]. Acquired resistance is often the result of a secondary

EGFR mutation, while in many cases it occurs due to activation

of an alternative signaling pathway. The most common (49%–

63%) acquired mutation is T790M, which results in a threonine-

methionine substitution at position 790, the ATP binding site of

the receptor protein. This amino acid exchange prevents EGFR-

TKI from binding to the kinase domain and results in increased

ATP affinity. Further to de novomutagenesis it is assumed, that a

co-existing, drug-resistant EGFR T790M positive subclone has

been selected by TKI treatment. In addition to the T790M

mutation, EGFR gene amplification and several rare second/

third EGFR mutations are considered as resistance mechanisms,

including the C797S, L792, L718Q, SV768IL genotypes. The

activation of alternative signaling pathways may also occur

through a gene amplification, such as MET, HER2 or other

rare gene mutations. Resistance may also result from tumor

phenotypic alterations, such as transformation towards

squamous or small cell carcinoma and epithelial-mesenchymal

transition [43, 44]. The most common causes of acquired EGFR

TKI resistance and their relative frequency are shown in Figure 3.

It is surprising that, despite the wealth of data that has been

accumulated on the incidence and therapeutic significance of

EGFR mutations, very little is known about the origin and causes

of EGFR mutations. Few publications correlate different

etiological factors and EGFR mutations. It appears that air

pollution, including exposure to microparticles, can induce

EGFR mutations [45]. In addition, exposure to radon in the

residential environment may also have a potential EGFR

mutation-inducing effect [46].

FIGURE 3
The most common causes of acquired EGFR TKI resistance.
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EGFR genotyping is generally based on sequence analysis of

tumor DNA isolated from biopsy samples. As a fast alternative

approach to predict the efficacy of EGFR inhibitory treatment,

the expression of total EGFR protein was first attempted for

immunohistochemistry, but as already mentioned, this remained

inconclusive [23, 47] Mutation-specific monoclonal antibodies

against exon 19 E746-A750del and exon 21 L858R mutations are

available, which represent approx. 90% of all EGFR mutations

(clone 6B6 for exon19 deletions; and clone 43B2 against point

mutation of exon21 L858R, Cell Signaling Technology) [48].

Tests with these antibodies have shown relatively high sensitivity

and specificity for the two mutations indicated, especially for

L858R. The lower sensitivity for exon19 deletions is mostly

explained by the fact that the exon19 antibody only detects

the most common deletion of exon19 (deletion E746-A750).

This deletion is of 15 base pairs and represents 50%–65% of all

exon19 deletions. However, a variety of deletions, including 9, 12,

16, 18, and 24base-pairs variants have been identified, each

producing slightly different protein and antigen epitope

structure not detectable by the commercial exon19 antibody

[49]. According to the literature the EGFR mutation-specific

antibodies have a fair sensitivity and high specificity in

identifying lung adenocarcinomas with classic EGFR

mutations, while they do not recognise uncommon EGFR

mutations. They did not provide sufficient sensitivity (about

40%–60%) or specificity (70%) for the detection of all EGFR

mutations, compared to gold standard sequencing methods

[50–53]. Sanger DNA sequencing has been widely used, but

its disadvantages, primarily its low sensitivity (requirement of

40%–50% mutant DNA in samples) [54], has before led to the

development of more sensitive detecting methods including real-

time quantitative PCR (RT-PCR). However, this method is

relatively expensive, time consuming, and not incorporated in

routine diagnostic procedures in many departments of

pathology. In contrast, immunohistochemistry has lower costs,

shorter turnaround time, and is available in the majority of

laboratories. IHC is a rapid, cheap and well-known assay that

does not require huge tumor cell content and performs quite well

even in degraded tissue (e.g., decalcified bone tissue) or cytology

samples. EGFR-mutant-specific antibodies cannot replace

conventional molecular methodologies, but they could be very

helpful in small tumor samples with poor material [53].

KRAS mutations

KRAS is one of the longest known oncogenes and activating

mutations play a crucial role in the early oncogenesis of several

types of tumors, such as pancreatic ductal adenocarcinoma,

colon cancer and lung cancer [55]. HRAS and NRAS are the

other two members of the RAS gene family with clinical impact

[56]. The human homologue of the RAS gene, HRAS, located on

the short arm of chromosome 11 at position 11p15.1-11p15.3,

was first described in the early 1980s in a human bladder cancer

cell line. A short time later KRAS, a gene showing homologue

features was detected in lung adenocarcinoma, located on the

short arm of chromosome 12 at position 12p11.1-12p12.1. The

NRAS gene is located on chromosome 1 [57]. All three RAS

genes have 4 exons and broadly similar structures [58]. The

KRAS gene encodes two protein isoforms composed of 188 and

189 amino acids (KRAS-4B and 4A), the single amino acid

difference is a result of alternative splicing [59]. The KRAS

protein is a cell membrane-associated G protein with GTP-ase

activity [60,61], coupling cell surface growth factor receptors

such as EGFR to various intracellular (mitogenic) signaling

pathways. The most common signaling pathways involved are

the mitogen activated protein kinase (MAPK) [62, 63] and

phosphatidylinositol 3-kinase (PI3K) pathways [64]. The

active RAS protein binds GTP, in which guanine nucleotide

exchange factors (GEFs) participate through GTP-GDP

exchange. GTPase activating proteins (GAPs) inactivate RAS

by enhancing the GTPase activity of the RAS [60, 61, 65]. RAS

gene mutations at specific sites result in spontaneous activation

of the RAS protein without mitogen signaling, leading to

uncontrolled cell proliferation and cell survival. As these play

an important role from the earliest phase of carcinogenesis they

are called oncogenic, or hot-spot mutations [55, 66] In the case of

KRAS G12C or G12V mutations, intracellular levels of RAS-

related proteins (RALs) are elevated and AKT phosphorylation

is reduced [67].

The earliest and most frequent mutations in lung

adenocarcinoma occurs in the KRAS gene and affects the

EGFR/RAS/RAF signaling pathway [68–70]. The prevalence of

the KRAS mutation is around 30% in the Western population,

compared to around 10% in the Far East. In lung cancer,

mutations in NRAS or HRAS are rare, with a prevalence of

less than 1% each. The vast majority of KRAS mutations (about

80%) affect codon 12 within exon 2 of the gene and is close to the

section encoding the nucleotide binding site of the KRAS protein.

The most common change of codon 12 mutations is a G>T
transversion, which results in a glycine-cysteine (G12C) or

glycine-valine (G12V) substitution at the protein level.

Another type of codon 12 mutation is G>A transition,

replacing amino acid glycine by aspartic acid (G12D). Less

frequent codon 12 mutations are also known: G12A, G12S,

G12R, G12F. Occasionally, mutations can be detected in

codon 13 (G13C) or codon 61 (Q61H) [71].

Mutations generally inhibit the interaction of KRAS with

GAPs and the hydrolysis of GTP bound by KRAS, thereby

keeping the KRAS protein in an active conformation [72].

Different mutations activate different intracellular signaling

pathways to different degrees. In KRAS G12C mutant tumors,

the classical mitogenic signaling pathway (RAS-RAF-MEK-ERK)

is activated, whereas the PI3K-AKT-mTOR pathway is dominant

for the other mutant genotypes. This may be due to a different

RAF affinity in each mutation type [73] The G>T transversions
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resulting in G12C exchange are supposedly associated with

polycyclic aromatic hydrocarbons (PAH) exposure in tobacco

smoke. On the other hand, G>A mutations resulting in KRAS

G12D are more common in non-smokers. The prevalence of

KRASmutations is 40% in heavy smokers, 30% in former current

non-smokers and 20% in never-smokers [74]. Themost common

type is G12C, which accounts for 40% of all KRAS mutations,

while G12V and G12D account for 19% and 11%, respectively.

The average relative frequency of KRASmutation types, based on

large databases, is shown in Figure 4.

There are also significant geographical and social differences

in the prevalence of KRAS G12C, with a higher prevalence in

Western countries and a lower prevalence in the Far East (8.9%–

19.5% and 1.4%–3%, respectively), which may be related to

smoking habits. Our own observation also suggests this, as

KRAS G12C is more common in Eastern Hungary, the care

area of our centre, than in the better developed western part of

the country, which may be explained by the smoking habits of the

population here (unpublished data). Although KRAS mutations,

especially G12C, are strongly associated with smoking, KRAS

mutations are surprisingly unfrequent in small cell lung cancer,

which occurs almost exclusively in heavy smokers [74, 75]. In

squamous cell carcinomas, which are also strongly associated

with smoking, the occurrence of KRAS mutations is rare or only

occurs in mixed tumors, such as adenosquamous carcinoma [71].

The frequency of KRAS mutations also varies in the histological

subtypes of adenocarcinoma. KRAS mutations are most often

detected with mucinous morphology, but different genotypes

show variable frequencies (G12C rarely, whereas G12V and

G12D more often) [76]. Among mucinous tumors, KRAS

mutations are almost exclusively found in invasive mucinous

adenocarcinomas (69%), with no KRAS mutations detected in

adenocarcinoma in situ and colloid carcinoma. However,

mucinous carcinomas do not harbour EGFR mutations [77].

Interestingly, the KRAS mutation is more common in women

[78]. The metastatic pattern of the tumor also differs with the

mutant genotype, with G12C tumors having a higher incidence

of intrapulmonary metastasis (38% vs. 21%) and a lower

incidence of pleural metastasis (4% vs. 39%). It was also

observed that brain metastasis is less frequent in KRAS

mutations (33% vs. 40%), but the frequency of brain

metastasis is similar for each KRAS mutation type [79, 80].

FIGURE 4
Average relative frequency of the most common KRAS mutation types.
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The presence of EGFR and KRAS mutations are mutually

exclusive. In theory they affect the same signaling pathway and

the presence of one mutation is sufficient for tumourigenesis.

Despite this generally accepted view, KRAS and EGFR mutations

can rarely occur within the same tumor [76, 81]. A recent large

retrospective study of data from 3,774 patients found the

concomitant presence of two or three driver mutations in

1.7% of cases, most commonly EGFR/KRAS mutations (in

0.53% of cases). It should be noted that this study examined a

patient population from the Far East, where the prevalence of

EGFR mutations is inherently high, 43% in this study [82].

The particular role of KRAS in tumorigenesis is also

suggested by the observation that in one of the most common

congenital pulmonary malformations, congenital pulmonary

airway malformation type I (CPAM), KRAS mutations (G12V

or G12D) are often detected, predominantly in intracystic

mucinous cell clusters. In fact, these mutations can be

identified in nonmucinous cystic regions as well, but not in

healthy lung tissue. In these patients, KRAS mutant

adenocarcinoma of mucinous character frequently appears

later, indicating to the oncogenic nature of the mutation [83–85].

The prognostic role of KRAS mutations in lung

adenocarcinoma has long been the subject of intensive studies.

Although many data have been published on this issue, its

prognostic significance is still not clearly understood.

Investigations of prognostic significance are complicated by

the fact that the term “KRAS mutation” itself is not uniform,

mutation types, ethnic, gender and histological differences as well

as treatment mode should also be considered. In addition, other

genetic abnormalities, such as EGFR mutations, modify the

behavior of KRAS wild-type cases and affect prognosis [86].

However, most of the large case-control studies published in

recent years support the hypothesis that the presence of KRAS

mutations, particularly KRAS G12C mutations, has a negative

prognostic significance, and reduce both OS and PFS [87–90].

There is also evidence that increased mutated KRAS levels in

circulating tumour DNA also have a negative prognostic

significance [91].

The predictive significance of the KRAS mutation has also

been extensively studied. Many reports suggest that mutant

KRAS is not a negative predictor of conventional

chemotherapy [92] However, as with prognostic significance,

the question is more nuanced, with many factors to consider,

such as the type of KRAS mutation, the patient population

studied and treatment characteristics. In early-stage resected

NSCLC patients, no significant predictive value of KRAS

mutation status was found for adjuvant treatment [93], and

similar results were obtained in the neoadjuvant setting [94].

A more recent study showed that KRAS mutation is a negative

predictor of cytotoxic chemotherapy in advanced NSCLC [95].

Another important question is the impact of KRAS

mutations on targeted therapies, especially EGFR targeting.

Many conflicting observations have been reported on this

topic, too. Most studies have shown that the presence of a

KRAS mutation has a negative predictive effect in this respect,

EGFR TKI treatment in these patients having a worse objective

response rate. However, no difference in survival has been found

between KRAS mutant/EGFR wild-type and KRAS wild-type/

EGFR wild-type patients, therefore, the significance of KRAS

mutation to select patients for EGFR TKI treatment appeared to

be limited [96]. The results of individual studies are significantly

affected by the type of KRAS mutation present: while poor

treatment efficacy is seen with G12C and G12V, better

response rates are seen with G12D and G12S [97].

Testing for KRAS mutations is possible from tumor DNA

isolated from tumor tissue, bronchial brush smears, plasma or

pleural fluid (cfDNA analysis), using either a single-gene PCR-

based approaches, classical or a next-generation

sequencing [98, 99].

BRAF mutations

BRAF is a member of the rapidly accelerated fibrosarcoma

(RAF) kinase family. Its role is signal transduction from the RAS

protein to the mitogen-activated protein kinase cascade (MAPK)

[100]. The RAF protein is composed of three main domains:

CR1, CR2, CR3. CR1 functions as an auto-inhibitor of the kinase

CR3 domain and is also responsible for RAS-GTP binding. The

CR2 region forms a flexible link between the CR1 and

CR3 domains. Upon activation the RAS-GTP binds to the

RAS-GTP binding site (RBD) of the CR1 domain. BRAF is

then phosphorylated on amino acids T599 and S602, which

results in a protein conformational change. This active form

homo- or heterodimerizes with other RAF family proteins, also

contributing to the stabilization of the active conformation. The

results is the activated BRAF kinase domain, which

phosphorylates MEK1, the downstream member of the MAPK

signaling pathway [101].

BRAF is one of the most frequently mutated genes in human

tumors. Mutations are most frequently detected in melanoma

(40%–50% of cases), but are also common in papillary thyroid

cancer, colorectal cancer and NSCLC [102–105].

(It is interesting to note that Davies [102] was the first to

report the BRAF mutation, but in her publication she uses a

different nomenclature, V599E, to refer to the mutation he

detected - now called V600E-because the sequence of the

protein had previously been misinterpreted, A31 G32 A33 was

mistaken for R31 P32. Because A33 was missing from earlier

sequences, some studies incorrectly assigned wrong numbers to

coding mutations and amino acids.)

BRAFmutations most commonly occur at codon 600 in exon

15 of the gene, resulting in the exchange of amino acid valine to

glutamate (V600E) of the protein. Other substitutions, such as

V600D/K/R, can be also rarely seen at this site. These mutations

are also known as class I mutations [106]. The V600E mutation
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results in a marked increase in BRAF kinase activity (up to 500-

700-fold compared to wild-type BRAF), with a consequent

stimulation of the MAPK signaling pathway. The V600E

mutation results in the conformational change of the

monomer BRAF protein already possessing with an active

kinase function that would otherwise gain through

dimerization of the wild-type conformation [107]. In

melanoma, V600E is the most common BRAF mutation,

whereas in NSCLC only half of the mutations affecting BRAF

belong to this group. NonV600E mutations form a

heterogeneous group and can be further classified into class II

and class III [101].

BRAF mutations play an important role in lung

carcinogenesis, as also demonstrated experimentally in vivo

[108]. Data from large case-control studies suggest that BRAF

mutations occur in 2.2%–4.9% of NSCLC. Owsley found

772 BRAF mutations (4.1%) out of 18,944 NSCLC cases, of

which 30.7% (237 cases) were V600E mutations [103]. In

Villaruz’s study, 21 cases (2.2%) of 951 adenocarcinomas

proved to be BRAF mutant, 81% of which were V600E [109].

V600E mutations occur mainly in women, non-smokers, are

associated with micropapillary morphology and have a worse

prognosis than wild type [110]. Non-V600E mutations are

exclusively detected in smokers, in equal proportions in men

and women, and are not associated with a prognosis worse than

the wild type (Marchetti, 36 BRAF mutations detected in

739 adenocarcinomas- 4.9%- of which 56.8% were V600E)

[111]. The results of individual studies are contradictory

regarding the prognostic role. Villaruz et al. observed a better

outcome for V600E, while others did not observe any difference

in prognosis [109, 112] The contradictory results are likely

explained by the fact that BRAF mutations are relatively rare

and only small cohorts of patients could be examined despite

extended studies. Co-mutations are relatively common, mainly

mutations in KRAS and PI3K, while in nonV600E, mutations in

p53 and STK11 are common [106].

The conformational change through the mutation enables

the differentiation of the BRAF protein from the wild-type form.

Thus, the BRAF status can also be assessed by

immunohistochemistry for V600E mutations. The

commercially available monoclonal diagnostic antibody was

raised against a synthetic version of the V600E-encoded

protein fragment located around the amino acid affected by

the mutation [113]. This antibody detects the BRAF V600E

mutant epitope with sufficient sensitivity and specificity, as

has been demonstrated in several tumor types such as

colorectal carcinoma, papillary thyroid cancer and melanoma

[114–118] However, it is not applicable to V600D/K/R or class II

and III non-V600E mutations. Since almost half of the BRAF

mutations in NSCLC are nonV600E, the IHC test is of limited use

to identify tumors harbouring BRAF mutations. However,

according to current NCCN recommendations, specific TKI

inhibitor treatment should be used for V600E mutation

positive tumors [119]. Thus, the IHC methodology may be

considered as a screening test for the identification of these

patients in histological conditions. In addition, the same

guidelines (and updated version also) recommend an NGS-

based methodology to determine a comprehensive BRAF

status [120].

Gene fusions with clinical relevance

In addition to the now “classic” MAP-kinase pathway

mutations, several clinically relevant chromosomal

rearrangements have also been identified in NSCLC. It has

long been known that specific gene fusions determine the

development of several haematological malignancies and

sarcomas. The earliest such gene fusion identified was bcr-abl

characteristic for chronic myeloid leukaemia, discovery finally

leading to the pioneering concept of tyrosine kinase inhibitor

therapies [121]. Oncogenic gene translocations play a special role

in NSCLC carcinogenesis, especially if their functionality can be

therapeutically blocked. The most important ones are ALK,

ROS1 and RET rearrangements and the significantly less

frequent NTRK gene fusions, with prevalence rates of 4%–6%,

2%, 1%–2% and 0.1%–0.23%, respectively. These fusions occur in

a patient population clinically distinct from classical NSCLC

(predominantly younger, non-demented patients with

adenocarcinoma histology).

Due to the availability of effective targeted TKI drugs with

FDA or EMA approval it is particularly important to identify

these patients within the confines of predictive molecular testing.

The selection of sufficiently effective and validated, yet rapid and

not least relatively inexpensive methodology is a major challenge

for pathology laboratories and molecular geneticists. In addition

to the “big four,” additional gene fusions have recently become

known, such as those involving NRG1, SMARCA4, BRAF,

FGFR1 and EGFR, further complicating the everyday

molecular diagnostic practice of NSCLC.

ALK rearrangements

The ALK gene (anaplastic lymphoma kinase) was discovered

as a result of genetic studies in anaplastic large cell lymphoma.

The gene is located on the short arm of chromosome 2, in the

2p23 region. As a member of the insulin receptor superfamily,

ALK encodes a tyrosine kinase-activated transmembrane

receptor protein whose function is only partially understood.

In humans, ALK expression is detected intermittently during

neural development, with a decline in expression during

postnatal life. In adults, it is expressed only scattered in some

neurons, endothelium and in pericytes of the brain. The ALK

protein contains an extracellular ligand-binding, a

transmembrane, and a cytoplasmic kinase domain [122]. The
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ligand(s) for the ALK receptor have not been unequivocally

identified. The role of pleiotrophin, midkine was hypothesized

[123], followed by other candidates, including heparin,

FAM150A and FAM150B [124].

The main types of ALK gene alterations include

rearrangements (fusions), gene amplification, and point

mutations [125].

Fusions of the ALK gene, like the amplification of the gene

leads to constitutive activation. Amplification of ALK has been

detected in neuroblastoma [126] breast cancer, anaplastic large

cell lymphoma and pulmonary sarcomatoid carcinoma [127]. On

the contrary, point mutations are the most common causes of

resistance to ALK TKI treatment. Known resistance mutations

are G1269A, C1156Y, L1196M and several other point

mutations [128, 129].

The 2p chromosomal region is sensitive to genotoxic effects,

favoring the breakage of the ALK gene, with the result of gene

fusions and increased expression of the kinase domain of the

ALK protein. In 1994, a t [2, 5] translocation was first described

in anaplastic large cell lymphoma, resulting in an NPM

(nucleophosmin)-ALK fusion gene, an event that is detected

in 60%–80% of ALCL [130]. It has subsequently been described

in additional tumors: e.g., inflammatory myofibroblastic tumor

[131], colorectal and breast cancer, and esophageal squamous cell

carcinoma [132]. Further fusion partners were later identified.

The setup of the rearrangements is common in that the

breakpoint leaves the entire ALK tyrosine kinase domain

intact, while the promoter region always comes from the

fusion partner. The fusion partner also contains an

oligomerization domain, the presence of which allows ligand-

independent constitutive activation of the receptor protein.

In 2007, Soda and colleagues detected the EML4

(echinoderm microtubule associated protein-like 4)-ALK gene

rearrangement in NSCLC. This gene rearrangement is caused by

an inversion of the chromosome region 2p21-23. The

extracellular and transmembrane regions of ALK are replaced

by EML4. There are various EML4 breakpoints and therefore,

several variants of the fusion gene are known [133]. The EML4-

ALK gene rearrangement results in constitutive activation of

ALK RTK, an oncogenic pathway in NSCLC. The resulting

EML4-ALK fusion gene product represents a novel molecular

target for the treatment of non-small cell lung cancer. ALK gene

rearrangement occurs in 3%–6% of all NSCLC. It is typically

associated with adenocarcinoma morphology (including

papillary, mucinous, and squamous cell variants) [134].

Detected mainly in non-smokers or light smokers and

typically in young patients. ALK gene rearrangement, EGFR

and KRAS mutation are mutually exclusive events [135].

The demonstration of EML4-ALK gene rearrangements was

challenging due different variants of the fusion, requiring

multiplex testing in the PCR era. FISH-based detection could

be adopted with satisfying efficacy since the 3′and 5′ends of the
ALK gene get separated due to the rearrangement, and their

labelling with separate fluorescent probes result in the

characteristic split signal. Currently, the FISH test is the gold

standard for the detection of ALK rearrangements in clinical

samples, requiring specific probes, fluorescence equipment and

properly experienced pathologist.

Because of the above drawbacks, an immunohistochemical

alternative for the detection of ALK gene involvement has been

attempted. This assumes that ALK protein is not expressed in

normal lung tissue, but gene fusion and ALK gene activation

result in moderately increased expression of ALK protein.

However, the detection of the protein underwent an evolution.

A “traditional” diagnostic antibody (ALK1) previously used for

anaplastic lymphoma was not sufficiently sensitive (sensitivity

67%, specificity 97%). However, the release of new antibody

clones promptly followed [5A4, D5F3, anti-ALK (1A4)] and the

use of highly sensitive amplification systems allowed to achieve

adequate sensitivity and specificity. The advantage of IHC testing

is its low cost, wide availability and rapid turnaround time. In

immunohistochemistry, the ALK fusion protein shows granular

cytoplasmic staining. In signet ring cells (a morphology often

seen in ALK-positive adenocarcinoma), staining is present along

the membrane in a thin rim that can be difficult to distinguish

from background staining. Several studies have demonstrated

that the use of properly validated antibody and

immunohistochemical platform, together with an external

control (e.g., appendix with intense ALK positivity in the

ganglion cells of the wall), provides a highly reproducible

result. The study of Mino-Kenudson et al. in 2010 (n = 153,

sensitivity 100%, specificity 99.0%) using clone D5F3 [136] and

that of Paik et al. in 2011 (n = 735, sensitivity 100%, specificity

96.2%) using clone 5A4 both showed high concordance between

Ventana IHC and FISH results [137].

The high sensitivity of IHC to detect ALK aberrations is

today generally accepted. Despite the rare IHC negative but FISH

positive cases published in the literature, the current

recommendations accept the use of IHC methodology without

FISH confirmatory testing in histological specimens [138] as well

as in cell block specimens prepared from malignant pleural

effusions [139]. However, the IHC methodology is neither

perfectly applicable nor validated in large series on

bronchoscopic brush cytology specimens. For cytology

preparations the FISH break apart test should primarily

be chosen.

ROS1 rearrangements

The ROS1 gene is located on chromosome 6 in the

6q22 region. The gene was originally discovered in the 1980s

during the study of avian sarcoma viruses. The human ROS gene

is homologous to the v-ros proto-oncogene of the UR2 sarcoma

virus [140, 141]. The protein contains an extracellular and an

intracellular domain, the latter having tyrosine kinase activity
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with structural similarity to the ALK protein. The physiological

role of the ROS1 gene and protein is poorly understood, but it is

thought to be involved in differentiation signaling pathways of

various epithelial tissues during embryonic development [142].

ROS1 protein expression is observed in the kidney, the

cerebellum, the peripheral nerves, various parts of the

alimentary canal, but is not expressed in lung tissue under

normal conditions [143]. The physiological ligand of the

receptor is still debated. The structure of the extracellular

domain suggests that cell adhesion plays a role in its

activation [142] The intracellular signaling pathways activated

by ROS1 are also not well understood, but induction of MAPK

and PI3K pathways is hypothesized [144]. Its oncogenic

relevance was first demonstrated in the early 2000s in

glioblastoma [145]. In lung tumors, rearrangements affecting

ROS1 gene were first described in 2007 [146]. ROS1 involvement

was observed in 1%–2% of NSCLC [147]. As a result of the

rearrangement, various breakpoints in the ROS1 gene may

evolve, including exons 32, 34-36, or introns 31 or 33. The

fusion gene commonly contains the tyrosine kinase domain of

ROS. There are 9 different fusion partners known in lung cancer,

such as FIG, CD74, SLC34A2 and SDC4, EZR and the list is

growing [148, 149]. The oncogenic mechanism of gene

rearrangement is not understood. ROS1 rearrangements

typically occur in lung adenocarcinomas, rarely in

adenosquamous carcinoma. These adenocarcinomas generally

show a solid pattern, frequently of signet ring cell type. Younger

patients and non-smokers are more frequently affected [150]. It

is often detected at an advanced stage and brain metastasis is

common [151]. Interestingly, lung carcinoma patients with

ROS1 gene rearrangements have a higher incidence of

paraneoplastic thromboembolic events [152].

Due to the larger set of fusion variants the

ROS1 rearrangement can be most effectively demonstrated by

FISH analysis, using ROS1 specific DNA-probes and the

detection strategy of the ALK testing. Sequencing by different

NGS platforms is also applicable if tumor tissue and appropriate

amounts of DNA or RNA are provided. Rearrangement of the

gene is associated with overexpression of the ROS-protein,

allowing the use of ROS1-specific antibodies. For IHC-based

diagnostic testing, the use of the D4D6 ROS1 antibody clones is

recommended. In positive cases, fine granular cytoplasmic

staining is observed. Fusion variants show a different staining

pattern, which may be the result of the intracellular function and

localization of the fusion partner. For CD74-ROS1, a globular

pattern with randomly arranged cytoplasmic granules of 6–8 mm

diameter and weaker background cytoplasmic staining was

described, explained by the fact that CD74 is associated with

intracellular membrane systems. Membranous staining was seen

in the presence of EZR-ROS1 fusion, presumably due to the ezrin

protein binding to plasma membrane and actin cytoskeleton

[153] A uniform scoring system for the ROS1 IHC reaction is still

missing, most studies use the H-score calculated from the

staining intensity and the proportion of positive tumor cells.

With appropriate preanalytical and analytical standards, this

antibody can achieve high sensitivity (95%–100%) but

relatively poor specificity (63%–90%) [154–157]. The low

specificity may potentially originate from a moderate

ROS1 expression by macrophages, reactive alveolar

epithelium, or even by tumors without ROS rearrangement. A

higher cut-off value results in a higher specificity. Overall, the

IHC test has a high negative predictive value and is therefore

suitable as a screening test, with a negative IHC result virtually

ruling out the presence of ROS1 fusion. A positive IHC result

requires confirmation by genetic means, such as FISH or NGS

technology [158, 159]. Since ROS1 rearrangements are rare, the

relatively simple IHC staining is highly effective and avoids the

mass need for expensive molecular testing [138, 160].

RET rearrangements

The RET oncogene was identified in the 1980s by

transfection of DNA extracted from a human T-cell

lymphoma cell line [161]. The RET gene is located on

chromosome 10 at position 10q11.22 [162] and encodes a

transmembrane tyrosine kinase growth factor receptor. Its

extracellular domain contains 4 cadherin-like structures [163].

Its ligand is glial cell line-derived neurotrophic factor [164, 165].

Ligand binding results in dimerization and activation of the

receptor, which then activates several intracellular signaling

pathways such as PI3K/AKT, RAS/RAF/MEK/ERK or JAK2/

STAT3. RET activity is important for kidney and nervous system

development, gene expression is precisely regulated in space and

time during embryogenesis [165]. RET is required for the proper

development of the enteric nervous system, in particular for the

migration of neural crest cells and enteric neurons into the wall of

the alimentary canal. The absence of RET expression or activity is

associated with the development of Hirschsprung disease

(segmental aganglionosis of the colon) [166].

Various genetic defects within the RET gene are also related

with carcinogenesis. CCDC6-RET fusions have been detected in

thyroid cancer as early as in 1990 [167]. Further to oncogenic

fusions, activating point mutations of the RET gene are also

known. They are involved in the development of medullary

thyroid carcinoma and MEN2A syndrome, among others

[168, 169]. In NSCLC, RET gene rearrangement was first

reported in a Korean non-smoking male patient in

2012 [170–173]. Several large studies have reported that RET

rearrangement is present in 1%–2% of NSCLC (Takeuchi 0.9% in

1482 NSCLC, Qiu 1.4% in 1587 NSCLC) [149, 173]. Following

the summary of data from 4857 NSCLC patients from previous

studies, the prevalence of RET rearrangement proved to be 1.4%,

while in the adenocarcinoma group of 3,576 patients 1.8% had

RET fusions [174]. KIF5B-RET fusion was observed with the

highest prevalence (52%), this type was typical for women, while
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CCDC6-RET was mostly observed in men with a prevalence of

26% in total. In addition, several rare fusion partners have been

described (MIR392, ZBTB41, ITGA8, SLC39A8 [149]. Along

with the RET rearrangements, several other genetic events may

be detected; [175]. It is known that RET fusions are responsible

for acquired therapy resistance during EGFR TKI inhibitor

treatment in 1%–2% of the cases, mainly involving CCDC6 as

the fusion partner; [176]. In most RET rearrangements, the

transmembrane domain is lost, resulting in a chimeric

cytosolic protein that exerts its oncogenic effect through

constitutive activation of the kinase domain [161] The

majority of RET rearrangements, like ALK and ROS1 fusions,

occur in young, non-smoker or mild smoker women with lung

adenocarcinoma diagnosis; [173, 177]. This patient group has a

significantly higher incidence of brain metastases both at

diagnosis (27%) and overall during the course of the disease

than the RET wild-type group [178].

The demonstration of RET gene fusions in clinical samples is

of great importance, as there are several FDA-approved small-

molecule inhibitors promising effective treatment. Initially, non-

specific multikinase inhibitors were used, more recently followed

by RET-selective inhibitors [179–182].

RET rearrangements can be demonstrated by several

alternative methodologies. Although immunohistochemistry is

a widely available method and has proven useful in detecting

ALK and ROS1 rearrangements, its value in detecting RET

fusions is unfortunately limited. The IHC methodology using

RET specific antibodies had low sensitivity and specificity, with a

false positive rate of 62% and a false negative rate of 46%, in other

words, RET rearranged samples could not be equivocally

identified. These results have been unanimously confirmed by

several studies, and therefore the use of IHC is not recommended

for the diagnosis of RET gene rearrangement [183, 184].

On the contrary, the FISH methodology has been shown to

be successful in detecting a substantial amount of gene

rearrangements. Using RET gene region specific probes FISH

had a high sensitivity of 100% for the chimeric proteins KIF5B

and CCDC6 but less than 100% for the other partners. On the

other hand, a surprisingly poor specificity of 45%–60% was

measured, therefore, the currently available DNA probes have

not been recommended for routine diagnostics of RET gene

fusions [184, 185]. Considering all these issues NGS remains the

optimal tool for general RET testing. DNA-based NGS showed a

sensitivity of 87.2%–100% for detecting RET fusions, while its

specificity was also highly satisfying (98.1%–100%) [186].

NTRK fusions

In humans, three neurotrophic tyrosine receptor kinase

(NTRK) genes are known, encoding the transmembrane

neurotrophin receptors TrkA, TrkB and TrkC. These Trk

receptors are involved in embryonic development of the

central and peripheral nervous system [187]. In adults, they

are expressed only in neural tissue and skeletal muscle [188].

Ligand-dependent activation of Trk receptors activate several

biochemical pathways, including MAPK and PI3K signaling

[189]. Chromosomal rearrangements of NTRK genes result in

increased expression and/or activation of Trk receptors [190].

The occurrence of NTRK gene fusions is characteristic for some

rare tumor types, such as mammary analogue secretory

carcinoma of the salivary gland or congenital infantile

fibrosarcoma. ETV6-NTRK3 rearrangements are detected in

90% of these cases [191, 192]. Although NTRK gene

rearrangements are generally rare, they have been detected in

a broad range of common solid tumor types. NSCLC, colorectal

carcinoma, GIST, papillary thyroid carcinoma, melanoma,

pancreatic adenocarcinoma and gliomas were reported with

very rare NTRK involvement of less than 1% of cases [193].

In NSCLC, the incidence rate was only 0.1%–0.3%, an order of

magnitude lower than the frequency of ALK or ROS1 gene

rearrangements [194]. In two very large NSCLC case-control

studies, the rates of NTrk fusions were 0.1% (Gatalica, 4,073 lung

adenocarcinomas [195]) and 0.23% (Solomon, 3,993 lung

adenocarcinomas [196]). NTRK1 fusion could be

demonstrated most (68%), followed by NTRK3 (24%) and

NTRK3 fusion as the least common change. Because of the

rarity of occurrence, even the largest studies had limitations

defining detailed clinical characteristics of patients with NTRK

fusions. They suggest equal distribution in both women andmen,

with a wide age range. The majority of those carrying the fusion

are non-smokers, but heavy smokers were not excluded. Most

NTRK-positive tumors proved to be adenocarcinomas with

mucinous or poorly differentiated morphology, but fusions

have also been detected in neuroendocrine carcinoma and

even squamous cell carcinoma [197].

Although rare, the identifications of these tumors opens the

way for NTRK-targeted TKI therapy, that is available in the last

couple of years promising a favorable therapeutic response in

patients with NTRK gene fusion [198, 199]. In a 2023 study,

51 patients with advanced NSCLC harboring an NTRK fusion

had an ORR of 62.7% following entrectinib treatment, while the

PFS and OS was 28.0 and 41.5 months, respectively [200].

Predictive testing of NTRK gene fusion-due to the altogether

3 TrK genes and numerous fusion partner genes-is quite

cumbersome, even by the classic FISH arrangement. Due to

the 3 independent NTRK gene regions potentially involved, three

FISH assays and tests would be required. However, while the

detection of fusions involving the NTRK3 gene by FISH had good

sensitivity, too many false negative cases were reported for

NTRK1 fusion detection. This may be due to

intrachromosomal rearrangements involving a short segment,

allowing only limited signal separation in the break-apart probe

assay, causing interpretation difficulties. Another problem

appeared as FISH probes could not detect rearrangements

with some fusion partners. Because of these drawbacks, NTRK
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FISHwere not recommended for routine diagnostics [201]. As an

alternative, RNA-based massively parallel sequencing (MPS) is

considered as a favorable methodology. However, this technique

is not widely available, not mentioning the turnaround time and

costs of the test.

Taking everything together, immunohistochemical detection

of Trk proteins as a screening test should be considered.

Immunohistochemistry is available in virtually all pathology

departments, is relatively rapid and inexpensive and

sufficiently works with small amounts of tumor tissue.

Commercially available diagnostic antibodies detect all Trk

proteins. The staining pattern is variable: membrane,

cytoplasmic and nuclear positivity can all be present.

Unfortunately, a validated scoring system is not available at

this time. A positive tumor is defined as one with at least 1%

of tumor cell positivity, any kind of positivity more intense than

background should be satisfactory, regardless of the staining

pattern. Confirmatory testing of positive cases by MPS seems to

be necessary for proper interpretation.

According to the literature the sensitivity of the IHC method

ranges from 75% to 97% and the specificity is remarkably high,

reaching 98%–100% [202–204]. Previous large studies have

shown that the sensitivity of IHC is not uniform for the three

NTRK gene fusions, 96.2%, 100% and 79.4% sensitivity rates

were measured for NTRK1, -2, and -3, respectively, while the

specificity was 81.1%. More specifically for the lung

adenocarcinoma patient group, IHC sensitivity was 87.5% and

specificity 100% [196]. The above large studies all used the

Abcam EPR17341 antibody clone. However, in a more recent

study, 133 (14.8%) out of 1068 NSCLC cases were panTrk IHC

positive, but only 2 cases could be confirmed by RNA-based

testing, resulting a positive predictive value of 1.5% for the IHC

test applied [205]. Unlike in previous studies, in this work the

C17F1 antibody clone was used and any staining was accepted as

positive. In conclusion, predictive IHC testing of NTRK

involvement also should be performed with care. Sensitivity

and specificity rates may be strongly influenced by the type of

the diagnostic antibody used. However, sensitivity of IHC

supposed to be relatively lower for NTRK3 fusions, the reason

of which is not known in detail. If uncovered, low sensitivity of

the IHC screening could drop out patients of an effective

treatment opportunity.

Novel driver gene defects in NSCLC

MET alterations. Met exon
14 skipping mutations

The mesenchymal epithelial transition (MET) proto-

oncogene is located in t4.1he chromosomal region 7q21-q31

and encodes a transmembrane receptor tyrosine kinase protein

[206, 207]. The MET protein is expressed in diverse cells of

epithelial origin, and is further expressed in liver cells, endothelial

cells and neurons. The ligand for this receptor is hepatocyte

growth factor (HGF), which is mainly produced by mesenchymal

cells, such as fibroblasts [208]. The extracellular part of the

receptor protein is responsible for ligand binding and includes

domains like the semaphoring and the immunoglobulin-plexin

transcription factor domain. The intracellular part is composed

of the juxtamembrane domain and the catalytic domain [209,

210]. Ligand binding activates the protein by causing

homodimerization, which then leads to autophosphorylation

of tyrosine residues in the catalytic domain. Activated MET

induces several intracellular activation pathways through

MAPK, PI3K, Nf-kB and signal transducer and activator of

transcription3 (STAT) signaling. HGF/MET activation plays a

key role in epithelial-to-mesenchymal transitions (EMT) by

regulating extracellular matrix adhesion and cytoskeletal

changes [211, 212]. The deactivation mechanism of the

activated signaling pathway deserves attention, as changes in

this process play a key role in the carcinogenic effect of MET

[213]. After ligand binding, homodimerisation and intracellular

signaling the active receptor protein is internalized by clathrin-

mediated endocytosis, it is partially degraded but recycling and

return to the cell membrane is possible. This process is controlled

by ubiquitin ligase casitas B-lineage lymphoma (CBL), which

recognizes the Tyr1003 residue encoded in exon 14 of the MET

gene and the ubiquitinated MET is degraded by the endosome

system [214, 215].

Genetic events may affect MET protein function resulting in

oncogenic effects. MET gene amplification results in increased

expression and constitutive activation of the kinase protein. This

mechanism is supposed to be responsible for acquired resistance

during EGFR TKI treatment in 3%–4% of [42, 216, 217]. Various

point mutations have also been detected in several tumours,

including lung carcinoma, but their oncogenic role remains

unclear [218]. Moreover, some gene fusions have also been

described, such as KIF5B-MET, which have potential

oncogenic effects and serving as therapeutic targets [219].

Exon 14 mutations are the best known MET alterations with

pathogenetic and apparently, clinical significance. This specific

mutation type is a result of a two base pair insertion in intron 13.

The insertion represents an alternative mRNA splicing site with

the consequence of the “skipping” of the entire exon 14 during

translation for protein synthesis. Therefore, the functional

molecule lacks the juxtamembrane segment containing the

Tyr1003 residue responsible for the internalisation of the

activated receptor. Thus, the exon 14 skipping mutation

enhances the stability of activated MET on the surface of the

cell, resulting in a prolonged activity of the receptor signaling

[220, 221]. According to one of the first large case-control

studies, this mutation is present in about 3% (131/4,402) of

NSCLC cases [222]. According to a recent large meta-analysis,

exon14 skipping mutations can be detected at a rate of 2% in

NSCLC, no significant geographical differences are reported. The
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prevalence proved to be 12% in non-smokers and 2% in smokers,

with a similar overall prevalence of MET14 skipping mutation

positive patients with a history of smoking and non-smoking. It

is more common in women and at older age (average is 73 years).

It is noteworthy that while the histological type of

adenocarcinoma has a prevalence of 2.4%, it is detected in

12% of sarcomatoid carcinomas [223]. Association with major

driver mutations (EGFR, KRAS, BRAF and ALK, ROS1 gene

fusions) appears to be rare, but some other genetic events, such as

MET, EGFR amplification, or PI3K mutations may co-occur

[222]. Data to date suggest that MET exon 14 mutations in

NSCLC are associated with a poor prognosis.

The therapeutic targeting of MET kinase is relevant with

multiple TKI drugs (e.g., tepotinib, capmatinib, savolitinib)

resulting in good therapeutic response [224, 225]. This is true

for the exon-skipping alteration but also for the Y1003N

mutation of the juxtamembrane domain, which also inhibits

CBL-mediated degradation [222].

Due to the heterogeneity of Met exon 14 aberrations,

their detection is another challenge for diagnostic pathology

laboratories. Attempts have also been made to detect MET

alterations by immunohistochemistry. While overexpression

of MET protein can be detected in many tumor types in many

cases, MET overexpression can be detected in 35%–72% of

NSCLC by immunohistochemistry [226, 227].

Unfortunately, in the majority of IHC positive cases, there

is no Met exon 14 skipping or MET amplification. As shown

in a recent study, 71 tumors in 181 NSCLC cases had MET

overexpression detectable, but only 1% of IHC positive cases

had amplification and 3% had Met exon 14 skipping. These

results also show that IHC-based detection is not a suitable

screening test for MET alterations [228]. RNA-based assays

have the highest sensitivity and can detect exon 14 skipping

independent of the underlying diverse genetic alterations by

detecting fusions of exons 13 and 15 following mRNA

transcription. The disadvantage of the RNA-based

methodology is its sensitivity to RNA degradation [229].

Unfortunately, amplicon-based DNA NGS tests have a

detection rate of only 63% [230], whereas hybrid-capture

NGS methodology can achieve better results, but requires

larger amounts of sample DNA, which is frequently not

provided from small biopsy samples [231]. To overcome

this issue circulating free DNA (liquid biopsy) should

have lower sensitivity but a high positive predictive

value [232].

HER2 alterations

HER2 (ERBB2) is a member of the HER growth factor

receptor family. This family also includes EGFR, EGFR3 and

EGFR4. The HER2 gene is located in the 17q11.2-q12 region.

The encoded receptor protein has an extracellular ligand-

binding, a transmembrane and an intracellular tyrosine

kinase domain, like other growth factor receptors of the

family [233]. It is unique compared to other members of the

HER family in that it has no known ligand but has an intrinsic

tyrosine kinase activity and is specifically prone to homo- or

heterodimerization, which results in its activation. A frequent

heterodimerization partner is HER3. Activated HER2 can

activate several intracellular signaling pathways such as

MAPK, PI3K, and STAT [234].

Several alterations may occur in the HER2 gene, which have

oncogenic effects. Gene amplification of HER2 is well known in

breast cancer, one of the oldest known therapeutic targets [235],

but is also common in gastric [236] and ovarian cancer.

HER2 alterations can also occur in lung carcinoma, but gene

amplification is relatively rare. However, HER2 amplification in

NSCLC may be a potential cause of acquired resistance during

EGFR TKI treatment [42]. HER2 amplification is most easily

detected by FISH, which is analogous to the common testing

practice in breast carcinoma, with a HER2/

CEP17 hybridization signal ratio greater than 2. Importantly,

HER2 overexpression is often detected by

immunohistochemistry, which is usually due to a balanced

increase of copy number (polysomy). In this case the HER2/

CEP17 ratio does not exceed 2 determined the FISH analysis

[237]. Various mutations in the HER2 gene may also occur in

the coding regions of all three domains with a rate of 2%–4% of

NSCLC. In the first study, published in 2004, HER2 mutations

were presented in 10% of the lung adenocarcinomas [238]

Subsequently, several studies have reported higher case

numbers, with lower frequencies (1.6% testing 671 NSCLC

cases) [239]. The most common types of mutations proved

to be in-frame insertions in the kinase domain coding region in

exon 20. These mutations change the protein conformation and

increase kinase activity, thereby activating intracellular

signaling [240]. HER2 exon 20 insertions are like exon

20 insertions detected in the EGFR gene [241]. Many of

these insertions have been described, the most common

being the YVMA insertion, which was detected in 68% of

the 98 HER2 mutant tumors detected in a study of

altogether 2,788 patients [242]. HER2 mutations occur

mainly in women, non-smokers, are associated with

adenocarcinoma histology and brain metastasis is common

in these patients [243]. Another large study reported

HER2 mutations in 24 of 920 patients (3%), 71% non-

smokers, 58% women, mean age was 62 years [244]. The co-

occurrence of HER2 mutations with other classical driver

mutations is virtually excluded [239, 245]. However, some

HER2 mutations develop in about 1% of cases of acquired

resistance to EGFR TKI treatment [246]. Neither

immunohistochemistry nor FISH is suitable for

HER2 mutation detection. Since many types of these

mutations are known, NGS sequencing methodology is the

only effective way of testing [247].
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Immune-checkpoint alterations

Modulation of the anti-tumor immune response as another

option of anti-tumor therapy becoming part of everyday

oncological care. Tumor-related antigens can be recognised by

immune cells through the complex process of antigen-

presentation and T-cell activation. Ideally, T-cells migrate to

the tumor, where they recognise and destroy tumor cells, the

efficacy of which is regulated by several receptors and ligands

triggering co-stimulatory and inhibitory signals (immune

checkpoints). Tumour neoantigens play an important role in

the activation of the immune response enabling the separation of

tumor from normal cells. The accumulation of mutations in

genomically instable cancers is associated with the generation of

neo-antigens showing marked immunogenicity. More

specifically, the mutational burden is higher in cancers

associated with prolonged exposure to environmental

carcinogens. Examples include UV radiation in melanoma

development, and respiratory carcinogens, primarily polycyclic

aromatic compounds in the tobacco smoke, in relation with lung

cancer, both small cell and non-small cell type. Increased

mutation frequency is a result of insufficient DNA repair

mechanisms, e.g., the loss of mismatch repair (MMR) gene

functions [248].

The immune checkpoint regulation can be modified by

tumor cells, an important immune resistance mechanism.

Programmed cell death protein 1 (PD1) is a cell surface

immune checkpoint receptor in activated T- and

B-lymphocytes, with inhibitory impact on effector cell

functions [249]. The PD1 gene is located on chromosome

2 and belongs to the immunoglobulin gene family [250]. The

PD1 protein has an extracellular domain consistent with

immunoglobulin variable IgV domain, and is featured with an

intracellular segment including the immunoreceptor inhibitory

tyrosine-based switching motif (ITSM), responsible for

inhibition of T-cell activation. The ligand for the

PD1 receptor is PD-L1, a cell surface protein containing IgV

and IgC domains [251]. PD-L1 can be expressed by T and B cells,

macrophages, dendritic cells, and many non-haemopoietic cells.

Cells expressing PD-L1 are tolerated by the immune system.

Antigen-presenting cells expressing PD-L1 can inhibit T

lymphocytes. Thus, the physiological function of PD-L1 is to

provide immune-tolerance by inhibiting the adaptive immune

response [252]. Unfortunately, tumor cells may also acquire PD-

L1 expression in an adaptive or constitutional manner. Adaptive

PD-L1 expression occurs in response to interferon-gamma,

secreted by T-cells activated by tumor antigens and is mainly

observed in the tumor-immune contact zone. Constitutive

expression results from activation of various signaling

pathways and is uniformly distributed throughout the tumor.

Upregulation of PD-L1 ligand by tumor cells inhibits the

antitumor immune response in the tumor microenvironment.

In many tumor types, including NSCLC, PD-L1 expression is

observed in tumor cells, especially in poorly differentiated

tumors, and several large meta-analyses have shown that

increased PD-L1 expression has a negative prognostic

impact [253, 254].

Consequently, the therapeutic blockade of the PD1-PD-

L1 relationship represents a promising therapeutic modality in

oncology which was outlined by a surprising response in several

tumor types from the earliest stage of clinical studies [255]. By

now, therapeutic monoclonal antibodies with immune

checkpoint inhibitory effect have been introduced for the

treatment of a variety of tumor types. However, only about

20% of patients developed an objective response, the rest

either having no meaningful effect or developing resistance to

treatment. Although ICI treatment does not have serious side

effects compared to chemotherapy, characteristic adverse effects

may occur, which are often also serious. Therefore, predictive

biomarkers for patient selection of PD-L1-PD1 inhibitor

treatment would be of particular importance [256].

Unfortunately, there is currently no really good universal

predictive biomarker to select patients who could potentially

benefit from ICI treatment. In theory, the potential predictive

role of factors influencing the tumor-host immune system

relationship could be all be considered, including the tumor

mutational burden (TMB), the tumor infiltrating lymphocyte

(TIL) count, DNA repair systems, in particular mismatch repair

and finally the expression of PD-L1. Unfortunately, the

predictive clinical value of these factors varies significantly

between tumor types.

In NSCLC, the assessment of PD-L1 expression in tumor

tissue has been shown to have the strongest predictive value.

Early studies have already indicated that the efficacy of

PD1 blockade is highly dependent on PD-L1 expression in

tumor cells. However, a confusing situation has developed in

the field of predictive PD-L1 testing. In a short period of time,

four PD1-PD-L1 inhibitor drugs (nivolumab, pembrolizumab,

atezolizumab, durvalumab and more recently cemiplimab) have

been launched. In parallel, several diagnostic antibodies have

been released for the detection of PD-L1 expression. Large

clinical studies to test the therapeutic efficacy of their agents

applied different antibodies and used different

immunohistochemistry platforms. Currently, there are four

FDA-approved PD-L1 diagnostic antibodies run on two

different IHC platforms: clones 22C3 and 28-8 are determined

for the Dako link48 platform (Agilent), and clones SP263 and

SP142 for the Ventana (Roche) platform. In addition, various

scoring systems for PD-L1 expression have been established.

Briefly, the tumor proportion score (TPS) gives the proportion of

tumor cells with membrane expression, the combined proportion

score (CPS) to assesses the expression of immune cells in the

surrounding area in addition to tumor cells, and the IC score to

determine the expression of immune cells. Moreover, different

cut-off values have been set for the same active substance,

depending on whether it is defined for a first-line or a multi-
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line treatment. For some of the drugs, national medicines

authorities insist on the use of companion testing, e.g., the

22C3 antibody Dako link48 for pembrolizumab or SP263 for

durvalumab treatment. In other indications the use of PD-L1

testing is complementary, helping to select patients for a more

pronounced therapeutic response, thus providing a more

accurate assessment of the risk/benefit ratio. Such a

complementary test should be used, for example, for

atezolizumab with SP142 or for nivolumab with 28-8 antibody

clones. There are some indications and drugs where predictive

marker testing is not justified under the current pharmacopoeian

standards [257]. The results of the KEYNOTE-001 clinical drug

trial have shown a strong correlation between the efficacy of

pembrolizumab and the level of PD-L1 expression as determined

by the 22C3 antibody [256, 258]. The results suggested the utility

of 50% TPS as a cut-off, a value which was confirmed by

subsequent studies (Keynote-010 and 024). Interestingly, PD-

L1 expression as determined by 28-8 antibodies in the

Checkmate 017 study was not found to be predictive for

nivolumab response. However, the Checkmate 057 study

concluded, that PD-L1 expression and clinical response

significantly correlate, although only a modest ORR increase

was observed as expression increased. Thus, the FDA has

accepted PD-L1 detection for this drug as a complementary

test [259]. PD-L1 detection for atezolizumab has also been

accepted as a complementary test, based on data from the

POPLAR and OAK studies [260]. Most recently, cemiplimab

has received FDA approval for use, based on the results of the

EMPOWER-lung-1 study, and the use of this drug was also

linked to greater than 50% PD-L1 expression, determined by

SP263 and the Ventana platform as a companion test [261,

262]. The alternatives of specific ICI therapies and PD-L1

predictive testing techniques resulted in differences in the

current NCCN and ESMO recommendations, and these are

also reflected in the various national medicines regulatory

specifications [120, 263].

Taken together the above, a never seen complexity of a

biomarker determination can be stated. The variety of

different diagnostic PD-L1 antibodies and development

platforms and different evaluation systems as well as the

growing number of ICI drugs and relevant national

recommendations required the comparison of PD-L1

detection methodologies. The results of PD-L1 determination

with four commonly available anti-PD-L1 antibodies (22C3, 28-

8, SP142 and EIL3N) were compared in a multi-institutional

study [264]. In addition to IASCL, the relevant pharmaceutical

and diagnostic companies were also involved in the design and

conduction of the Blueprint 1 and 2 studies. The very detailed

results indicated that the evaluated tests were not always

interchangeable. The 22C3, 28-8 and SP263 antibodies and

their elicitation systems have been shown to be highly

concordant, in terms of sensitivity and specificity, for the

determination of TPS. In contrast, SP142 showed a

consistently lower TPS value, while 73-10, tested in the

Blueprint 2 study, showed a much more intense staining

reaction [265, 266].

A major limitation in PD-L1 testing is that it can only be

reliably done on embedded tissue samples. Although some

studies have reported results of PD-L1 detection on

cytological smears (bronchial brush smear, lymph node EBUS

guided FNA smear) [267], IHC on this sample type is difficult to

standardize and results show a large variability. The large

variability of preanalytical characteristics in cytology samples

is well known. As indicated in previous studies, fixation is a key

pre-analytical factor, e.g., alcohol-based fixatives strongly reduce

the feasibility of IHC reactions. Thus, the PD-L1 IHC reaction on

smears should be validated in every laboratory. The

determination of IC and CPS in cytology is also problematic

as the assessment of tumor cell-immune cell relations in direct

smears is almost impossible. Larger cell clusters, 3-dimensional

clusters, blood contamination hamper the evaluation. In

addition, instead of the membranous staining seen in tissue

sections, there may be diffuse surface staining on direct

smears, mimicking a cytoplasmic reaction [268–270]. As a

result, there is a high interpretation and interobserver

variability in the assessment of PD-L1 detection when

cytology smears are used [268]. For these reasons, the

manufacturers of FDA-approved diagnostic antibodies do not

recommend the use of cytology smears and users are advised to

favor cell blocks. Cytology samples processed in cell block format

have been shown to be suitable for PD-L1 detection. This

methodology is optimized for and is analytically similar to

IHC and allows standardization criteria of the IHC reaction.

Several studies have shown satisfactory concordance between the

results of PD-L1 detection on cell blocks and tissue samples

[271]. In special cases, when the sampling from the tumor tissue

(both histology or cytology) fails, it is possible to determine PD-

L1 expression from cell blocks of malignant pleural effusion

(MPE) samples. Relatively few studies have been performed on

this sample type, with small case numbers. The results to date

have shown good concordance (85.1%, kappa 0.774) with PD-L1

expression detected in paired primary tumor tissue samples,

using three TPS cut-off values. Interestingly, MPE cells

appeared to show significantly higher PD-L1 expression (p =

0.005) [272]. Our own institute has also had positive experience,

successfully using MPE cell blocks in the absence of tissue

samples to assess tumor PD-L1 status (data not published) In

conclusion, the formalin-fixed paraffin-embedded cell block

preparation technology is the ideal alternative to test PD-L1

in cytology specimen [272–274].

The development of pioneering assays to make PD-L1

determination is highly progressive. A new potential tool to

assess PD-L1 expression following immunohistochemistry is

digital image analysis, with or without the support of artificial

intelligence. One such system is the Aitrox AIModel [275]. These

digital systems provide powerful assistance in exact
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quantification and scoring of PD-L1 expression in classic

histological conditions.

Determination of soluble PD-1 or PD-L1 in plasma by

enzyme-linked immunosorbent assay (ELISA) is another new

approach to investigate PD-L1 status. High soluble PD-L1

detected before treatment indicates unfavorable prognosis in

ICI-treated lung carcinomas patients, with both PFS and OS

being shorter. Changes is sPD-L1 levels after therapy could not be

associated with disease outcome. A predictive role of sPD-L1 has

not been confirmed to date.

A further promising blood-based assay evaluates exosomal

PD-L1 and PD-L1 in circulating tumor cells. In the first series of

studies there was no significant correlation between circulating

tumor cell PD-L1 expression (neither pre- nor post-treatment)

and OS following ICI treatment. However, the dynamic

interaction between tumor and immune system was suggested

as significantly shorter PFS was observed with high exoPD-L1

levels before ICI treatment, whereas longer PFS was observed

with higher exoPD-L1 after treatment.

These plasma-derived PD-L1-associated assays, in addition

to simple and non-invasive sampling promise the potential of

PD-L1 monitoring to reflect the dynamic, temporal relationship

between tumor and immune system. The actual prognostic and

predictive role of these biomarkers for ICI treatment is not yet

clear [276].

There is generally a negative correlation between tumor PD-

L1 expression and response to immunotherapy and the presence

of oncogene driver mutations, except for KRAS and partially

BRAF and met exon 14 skipping mutations [277]. This

correlation has been confirmed in several studies [278, 279].

Since oncogene addicted NSCLC is a rather heterogeneous group

both genetically and biologically, there are differences in response

to ICI therapy between tumors defined by individual gene defects

[280]. Classical EGFR mutations and exon 20 insertions usually

show moderate PD-L1 expression and low TMB, and are

generally unresponsive to ICI treatment [281]. ALK and

ROS1 gene rearrangements often show high PD-L1 expression

but low TMB, and these tumours are not responsive to ICI

treatment [282, 283]. So strong is this negative correlation that

the presence of EGFR and ALK mutations is a treatment

exclusion in most ICI recommendations. HER2 mutations are

also associated with moderate levels of PD-L1 expression and low

TMB detection, and ICI treatments are not effective [284]. RET

rearrangements also show low TMB, variable levels of PD-L1

expression and, although there are few and conflicting data, they

do not suggest that ICI treatment is effective [285]. The tumours

defined by the gene defects listed so far, as previously detailed, are

predominantly located in the periphery of the lung and occur

mostly in never-smokers or light smokers. Driver mutations play

a key role in the formation of these tumours, with escape from

immune mechanisms playing a minor role, so that ICI treatment

is usually ineffective or results in a modest response [12]. EGFR

mutations and driver gene fusions are rare in lung tumors that

develop with prolonged exposure to carcinogen tobacco smoke,

but KRAS mutations are common [286, 287]. In addition, the

tumour mutational burden of these tumours is high. These

smoking-associated tumours are markedly immunogenic, and

thus tumour formation is influenced by immune escape

mechanisms, such as high expression of PD-L1 by tumour

cells. Not surprisingly, these smoking-associated tumours with

high PD-L1 expression and high TMB generally respond well to

ICI treatment [12]. However, due to genetic heterogeneity, there

are also significant differences within these tumour groups. In the

case of KRAS mutation, good results with ICI treatment are seen

in the presence of p53 mutation [288]. Such good results are not

observed for STK11 or KEAP co-mutations (KRAS mut/

STK11 mut: ORR11.6%, PFS: 2.0 months, OS: 6.2 months,

KRAS mut/STK11 wild type: ORR: 32.4%, PFS: 4.8 months,

OS: 17.3 months, KRASmut/KEAP mut: ORR: 17.8%, PFS:

1.8 months, OS: 4.8 months, KRAS mut/KEAP wild type:

ORR 29.3%, PFS: 4.6 months, OS: 18.4 months) [289].

Among BRAF mutations, a relatively good therapeutic

response to ICI treatment is expected in the presence of

smoking-associated class II-III non-V600E mutations. In the

presence of V600e mutations, only moderate results are

observed with ICI treatment [290, 291]. For tumours carrying

Met exon 14 mutations, moderate therapeutic response with ICI

treatment has been observed [292].

The everyday challenges of
biomarker testing

There has been an explosion of knowledge on the oncogenic

mechanisms of NSCLC drivers in recent years. Consequently,

molecular biomarkers have become known, which are in use for

predictive testing to optimize treatment of patients with

advanced lung cancer. The conventional approach to

biomarker testing is based on the analysis of tumour tissue

samples. The extended needs on different testing platforms

require increased amounts of tissue and DNA or RNA

extracted. Unfortunately, only about 20% of patients are

resectable, and in about 80% of cases the diagnosis is based

on small biopsy and/or cytological sample [293]. Previous reports

(before 2010) suggested that in up to 70% of all lung tumours,

diagnosis was made on cytological specimen alone [294]. In the

past decades, the differentiation of SCLC and NSCLC was

sufficient, but today the accurate subtyping of NSCLC is

required as the effect of targeted treatments is mostly

expected in adenocarcinomas [295]. NSCLC subtyping is most

reliable when tumor specimens are used but cytology smears are

principally useless in specific cases, e.g., PD-L1 determination.

The predictive molecular testing recommendations for lung

cancer therapy are constantly changing and in the light of new

scientific findings and evolving technologies. Further, there are

significant differences between the current NCCN, CAP, ESMO
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and Pan-Asian NSCLC recommendations [120, 263, 296, 297].

At the beginning of the era only one or two biomarkers needed to

be tested, starting with the EGFRmutational status. According to

2023 ESMO recommendations, all advanced non-squamous

NSCLC cases should be tested for ALK, ROS1, NTRK, RET

fusions, MET exon14 skipping mutations, BRAF, KRAS G12C

and HER2 mutations in addition to EGFR mutations. Molecular

testing is only justified for squamous cell carcinoma in special

circumstances: young age (below 50 years), non-smoker, ex-

moderate smoker or long-time non-smoker status. At this

complexity the use an NGS testing platform is recommended,

if available. Due to the expansion of gene fusions of interest,

RNA-based NGS appears to be the best option. In addition,

liquid-based cfDNA testing is also acceptable, but in case of

negative results, tissue sampling is required [297]. It is reasonable

to determine PD-L1 expression by IHC testing for both advanced

squamous and non-squamous NSCLC cases [263]. As already

detailed above, the available diagnostic platforms and scoring

should be carefully applied: testing with 22C3, 28-8, and

SP263 antibody clones show a high concordance, whereas the

clone SP142 results in a lower TPS [265, 266]. All these factors

require a carefully standardized planning of the daily

diagnostic practice.

National guidelines based on international recommendations

tend to develop, tailored to the national healthcare system and

financial resources. Accordingly, there might be significant

differences in the national recommendations. While the reflex

testing of biopsy specimens from all patients with advanced

NSCLC is generally recommended, on-demand testing is

preferred in some countries to save costs. Unfortunately,

according to a 2018 study, access to molecular testing is more

limited in several Central European countries due to limited

resources, and in many countries, on-demand testing is preferred

to reflex testing [298]. Since the publication of the

aforementioned study, there have been several encouraging

developments in these countries [299]. The question arises if

it is worth to expend resources on quasi-useless testing for

patients with poor performance status, ECOG4, who are not

suitable for active oncological care. The hierarchy of testing

methods should also be considered for the routine detection

of rare genetic events. As an example, it is cost-effective to screen

for rare NTRK rearrangements by immunohistochemistry and

then to confirm only positive cases by sequencing. The most

commonly used diagnostic antibodies currently commercially

available are summarised in Table 1.

Individual tests, like series of immunohistochemistry, FISH,

and PCR can lead to sample exhaustion, and thus, inconclusive,

or false negative results in small biopsies and/or samples with low

tumour cell counts by providing insufficient amounts of

extracted nucleic acid [300]. Thus, biomarker testing practice

is increasingly moving towards multigene technologies, such as

the NGS [301].

Based on cost-effectiveness calculations, NGS is already

preferable to single-gene tests when testing more than

4 targets simultaneously. In addition, this approach also

realizes life-year gains, as calculated in several states [302, 303].

A not negligible aspect of predictive biomarker testing for

NSCLC is turnaround time (TAT). Time consuming testing will

result in delays in patient treatment, which may even fail due to

patient deterioration. International recommendations suggest a

TAT of 10 days from receipt of the sample to the communication

of the result. The molecular test optimally should be performed

in nearby laboratory. However, molecular testing is frequently

centralized, which may prolong the TAT for logistical reasons

(sample transport). Reflex testing also shortens the TAT, and

supports optimal sample usage. In contrast, on-demand testing is

more appropriate to avoid unnecessary tests, at the expense of the

TAT [304]. It is important mentioning that the 10-day TAT

recommendations is difficult to achieve with NGS in general. The

sequencing approach is usually designed for 8 samples run

simultaneously and the biochemistry is followed by a

bioinformatic session of various complexity [304]. Any

molecular techniques have their pros and cons laboratories

should consider for their specific aims and needs. The choice

of sequencing chemistry, device and software solutions also

defines the acquisition of specific targets, the reagent

requirements, the rate of the testing and turnaround times.

In lung cancer patients the tumour is frequently irresectable

and/or the patient, or the tumor is unsuitable for bronchoscopic

and/or transthoracic sampling. Small biopsy samples may often

be not representative. In many of these cases, malignant pleural

fluid is an alternative diagnostic specimen. MPE is present in

about 15%–25% of lung tumours at diagnosis and occurs in 50%–

TABLE 1 Most common diagnostic antibodies used to test for driver
gene alterations or PD-L1 expression.

Driver gene alteration Antibody clone Vendor

EGFR L858R [48–52] 43B2
SP125

Cell Signaling
Ventana

EGFR del 19 (E746-A750)
[48–52]

6B6
SP111

Cell Signaling
Ventana

Alk [136, 137] D5F3
5A4

Cell Signaling
Novocastra

ROS1 [153, 155] D4D6 Cell Signaling

RET [185] EPR2871 Abcam

NTRK [196, 204, 205] EPR17341
C17F1

Abcam
Cell Signaling

BRAF [115, 117] VE1 SpringBio

MET [228, 231] SP44 Ventana

PD-L1 [265, 266] 22C3
28-8
SP142
SP263
73-10

Dako
Dako
Ventana
Ventana
Dako
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60% of lung cancer patients overall during the disease [305–307].

However, the fluid cytology samples are sometimes also difficult

to evaluate. It is recommended to prepare a cell block from the

MPE specimen instead of the conventional cytospin smear. In

general, cell blocks offer several advantages: the sample

specimen can be examined as a tissue sample, it allows safe

separation of activated mesothelial and tumour cells, and it

provides accurate tumour typing. The cell block has higher

diagnostic specificity and sensitivity than the cytospin smear,

depending on tumor type (25, 53, 78% and 95% for squamous

cell carcinoma, SCLC, adenocarcinoma and ovarian carcinoma,

respectively [306, 308]. As a major benefit, cell blocks are

suitable for immunohistochemical and molecular studies,

including the investigation of all common predictive

biomarkers for NSCLC therapy (EGFR, KRAS and ALK,

ROS1, PD-L1 state).

Conclusion

As described in our study, over the last 20 years, the

increasing understanding of the molecular background of

NSCLC has led to the identification of new therapeutic

targets. Year after year, molecularly targeted treatment options

are giving a growing group of patients with advanced NSCLC

longer survival and better quality of life, without the life-

threatening serious side effects of cytotoxic treatments. At the

same time, patient selection has created unprecedented

challenges for the diagnostic professions, particularly

pathology departments. Further persistent work is needed to

identify new molecular aberrations in addition to the current

therapeutic targets, which will allow the use of more effective

treatments for patients without the already identified

driver mutation.
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