AUTHOR=Verma Priyanka , Rishi Bhavika , George Noreen Grace , Kushwaha Neetu , Dhandha Himanshu , Kaur Manpreet , Jain Ankur , Jain Aditi , Chaudhry Sumita , Singh Amitabh , Siraj Fouzia , Misra Aroonima TITLE=Recent advances and future directions in etiopathogenesis and mechanisms of reactive oxygen species in cancer treatment JOURNAL=Pathology and Oncology Research VOLUME=29 YEAR=2023 URL=https://www.por-journal.com/journals/pathology-and-oncology-research/articles/10.3389/pore.2023.1611415 DOI=10.3389/pore.2023.1611415 ISSN=1532-2807 ABSTRACT=
A class of exceptionally bioactive molecules known as reactive oxygen species (ROS) have been widely studied in the context of cancer. They play a significant role in the etiopathogenesis for cancer. Implication of ROS in cancer biology is an evolving area, considering the recent advances; insights into their generation, role of genomic and epigenetic regulators for ROS, earlier thought to be a chemical process, with interrelations with cell death pathways- Apoptosis, ferroptosis, necroptosis and autophagy has been explored for newer targets that shift the balance of ROS towards cancer cell death. ROS are signal transducers that induce angiogenesis, invasion, cell migration, and proliferation at low to moderate concentrations and are considered normal by-products of a range of biological activities. Although ROS is known to exist in the oncology domain since time immemorial, its excessive quantities are known to damage organelles, membranes, lipids, proteins, and nucleic acids, resulting in cell death. In the last two decades, numerous studies have demonstrated immunotherapies and other anticancer treatments that modulate ROS levels have promising