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Background: Uveal Melanoma (UM) is the most prevalent primary intraocular

malignancy in adults. This study assessed the importance of chromatin

regulators (CRs) in UM and developed a model to predict UM prognosis.

Methods: Gene expression data and clinical information for UM were obtained

frompublic databases. Samples were typed according to the gene expression of

CRs associated with UM prognosis. The prognostic key genes were further

screened by the protein interaction network, and the risk model was to predict

UMprognosis using the least absolute shrinkage and selection operator (LASSO)

regression analysis and performed a test of the risk mode. In addition, we

performed gene set variation analysis, tumor microenvironment, and tumor

immune analysis between subtypes and risk groups to explore the mechanisms

influencing the development of UM.

Results: We constructed a signature model consisting of three CRs (RUVBL1,

SIRT3, and SMARCD3), which was shown to be accurate, and valid for predicting

prognostic outcomes in UM. Higher immune cell infiltration in poor prognostic

subtypes and risk groups. The Tumor immune analysis and Tumor Immune

Dysfunction and Exclusion (TIDE) score provided a basis for clinical

immunotherapy in UM.

Conclusion: The risk model has prognostic value for UM survival and provides

new insights into the treatment of UM.
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Introduction

Uveal melanoma (UM) is the most prevalent primary

intraocular malignancy in adults [1, 2]. Primary UM is usually

well controlled by surgery or radiotherapy, but metastases still

occur in more than half of UM patients [3, 4]. UM most often

metastasizes to the liver, and has a median survival of less than

1 year after metastasis [5–7]. Over the years, there has been an

evolution in prognostic assessment (metastatic risk) of UM, from

clinical and histological features to the analysis of genetic

mutations and chromosomal abnormalities. These included

clinical and histological features (patient age, tumor size,

ciliary body involvement, extraocular extension, and so on),

the genetic mutations [G protein subunit alpha q (GNAQ), G

protein subunit alpha 11 (GNA11), Splicing Factor 3b Subunit

1(SF3B1), BRCA1 associated protein 1(BAP1), and Eukaryotic

Translation Initiation Factor 1A X-Linked (EIF1AX)], and the

composition of chromosomal anomalies of chromosome 3, 6 and

8 [8]. Some studies classify tumors and assess prognosis based on

gene expression and chromosomal data [9, 10]. Despite extensive

studies, the prognosis of UM has not significantly improved and

there are no efficient therapies for metastatic UM, and treatments

for metastatic UM such as immune checkpoint inhibitors (ICI),

vaccination and t-cell therapy are much less effective than for

other tumors [11–15]. Therefore, selecting key genomes for the

stratification of UM patients and construction of tumor

prediction models could provide new strategies for more

precise molecular subtyping, screening of prognostic markers

and potential therapeutic targets, and corresponding

personalized treatment. At present, the rapid development of

bioinformatics analysis is conducive to the screening of

prognostic markers related to UM [16–18].

Epigenetic alterations can lead to aberrant gene regulation,

which plays an important role in tumorigenesis by silencing

tumor suppressor genes or activating oncogenes. These

epigenetic changes include DNA methylation, histone

modifications, and small non-coding RNA, many of which are

associated with the initiation and progression of UM [19]. It has

been found that mutations in BAP1, SF3B1, and EIF1AX in UM

with different prognoses exhibit different types of methylation

cluster status, and hypermethylation of chromosome 3 in UM is

also associated with downregulation of BAP1 gene expression,

which was further confirmed in vitro experiments that

knockdown of BAP1 gene or deletion of the protein induces

effects on methylation status in UM cells, causing UM cells to

exhibit a low metastatic risk phenotype [20–22]. Histone

modifications have also been associated with UM metastasis

and proliferation [23–25]. MicroRNAs, the most widely

studied small non-coding RNAs, have been shown to have

dysregulated anti-apoptotic effects, accelerated cell cycle

progression, and enhanced invasion and metastasis of many

cancers [26]. Epigenetic mechanisms have been found to

regulate the expression and activation of miRNAs in UM,

which in turn regulate the progression of UM [27, 28]. These

studies suggest that epigenetic alterations are closely associated

with the onset and progression of UM and that epigenetic

mechanisms play an important role in the development of UM.

Chromatin regulators (CRs) are drivers of epigenetic

alterations and are classified by function as DNA methylators,

histone modifiers, and chromatin remodelers [29–31]. In recent

years, abnormal expression of CRs is closely associated with the

development of several diseases, including several cancers

[32–35]. Aberrant expression of CRs CHD8 and CTCF led to

abnormal chromatin structure and epigenetic changes in many

cancer-associated genes, ultimately leading to tumor progression

and metastasis in prostate cancer patients [36]. Several CRs

associated with cancer subtypes and prognosis have been

identified as potential drivers of carcinogenesis [37]. There

were very few studies on the role of CRs in UM, so a

comprehensive analysis of CRs may make a theoretical

contribution to the diagnosis, classification, prognostic

assessment, and other features of UM. The simultaneous

screening of key genes for the stratification of UM patients

and the construction of tumor prediction models may provide

new strategies for more precise molecular typing and

corresponding personalized treatment.

In this study, we applied bioinformatics analysis to identify

the key regulators and prognostic genes of CRs in UM. We

applied the Non-negative Matrix Factorization (NMF) to cluster

The Cancer Genome Atlas (TCGA) dataset based on the

expression levels of prognostic-related CRs genes in UM, and

the differences in patient prognosis and clinical traits between

subtypes were also studied. We also screened core genes using

protein interaction networks and constructed prognostic risk

models using univariate Cox regression, least absolute shrinkage

and selection operator (LASSO) regression, and multivariate Cox

regression analysis. Then the accuracy, independence, and

validity of the risk model were assessed in the training cohort

and validation cohort. In addition, the relationship of the risk

model with the tumor microenvironment, immune infiltration

and immune checkpoints, and drug sensitivity was investigated,

thereby expanding the risk model prognostic values for patients

with UM. In summary, our work constructs a new risk model

based on CRs gene expression levels associated with UM

prognosis, which may have implications for the development

of diagnosis and treatment of UM.

Materials and methods

Data download and collation

A list of CRs (870 genes) was collected from previous

research [37], and the list of the CRs gene name was shown

in Supplementary Table S1. The mRNA data and clinical and

pathological characteristics were obtained from three datasets,
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including the TCGA-UM downloaded from the public dataset

TCGA (The Cancer Genome Atlas, https://portal.gdc.cancer.

gov/) and the UCSC Xena website (https://xena.ucsc.edu/), the

GEO database (Gene Expression Omnibus, https://www.ncbi.

nlm.nih.gov/geo/) datasets GSE22138and GSE84976 [38, 39]. All

data were normalized using R software, and the ComBat method

from the “SVA” R package was used to remove the batch effects

among three datasets [40]. The Principal Component Analysis

(PCA) showed the batch correction of three datasets.

Classification validation and variance
analysis of TCGA data sets

First, CRs genes significantly associated with UM prognosis

were screened by univariate Cox analysis, and prognosis-related

CRs genes were treated with the R package “survival” with

selection p < 0.01. Unsupervised subgroups of TCGA-UM

datasets were identified using the R package “NMF” [41],

based on these prognosis-related CRs genes. The subtypes

were verified by PCA using the R package “ggplot2.” The

Kaplan–Meier survival curves of the different subgroups were

analyzed and plotted using the R packages “survival” and

“survminer” [including overall survival (OS) and progression-

free survival (PFS)].

To explore the differences in clinical and pathological traits,

tumor microenvironment, and tumor immunity between the

two subgroups. The gene expression of prognosis-related CRs

genes and clinical traits in different subtypes were visualized

using the R package “Heatmap” and “ggplot2,” respectively.

The KEGG pathway was analyzed to explore the differences in

the biological processes between the different subgroups using

the R package “GSVA.” The ESTIMATE algorithm calculated

immune, stromal, and ESTIMATE scores in different subtypes

by using the R package “estimate.” A ssGSEA algorithm was

used to investigate the immune cell infiltration relationships

between the different subgroups using the R package “GSVA”

and “GSEABase,” R package “reshape2,” “ggpubr,” and

“pheatmap” was used to draw a heatmap and differential

boxplot.

Screening for key genes

To further screen the key CRs genes, the protein regulatory

networks of the prognosis-related CRs genes were analyzed using

the STRING online database, and only interactions that enjoyed a

minimum required combined score >0.4 were set as significant,

and visualized the results by Cytoscape software. Furthermore,

the key genes were identified based on the PPI network by using

cytoHubba, which is another plug-in of Cytoscape. We defined

the genes with node (degree > 9) as key genes and used them for

subsequent study analysis.

Risk model construction

Based on key CRs genes expression profiles and survival data

were combined for further analysis, and to further minimize the

dimensionality and build the risk signature, The R package “glmnet”

and “survminer” were used to perform the least absolute shrinkage

and selection operator (LASSO) regression analysis to determine the

minimum lambda value of the lasso model, and further reduce the

number of genes by multivariate Cox analysis to determine the final

genes and coefficients that constitute the risk model. The patients’

risk scores were then determined. Before that, the TCGAdataset was

randomly grouped to obtain the TCGA training group (N = 56) and

testing group (N = 28). The risk score formula for the sample is as

follows:

Risk score = (Coef1 *mRNA1 expression) + (Coef2 *

mRNA2 expression) +. . .+ (Coef n *mRNA n expression).

The verification datasets GSE22138 and GSE84976 were

categorized into high- and low-risk groups based on the risk

score’s median value in the TCGA training group.

Risk model validation

To assess the prognostic value of the risk model, we used the

following approaches. First, the predictive ability of the risk

model was assessed by using the R package “survminer” and

“timeROC,” and the Kaplan-Meier curves, with p < 0.05 between

the two groups indicating a significant difference in overall or

progression-free survival. ROC curves at 1, 3, and 5 years were

used to measure the accuracy of the predictive ability of the risk

model, with AUC (Area Under ROC Curve) value > 0.7 as a valid

criterion. Then, the risk model was compared with other clinical

characteristics. Finally, the “rms” R package plotted the clinical

nomogram. The performance of the nomogram in predicting the

overall survival (OS) of UM patients was evaluated using factors

such as sex, age, stage, TNM staging of the tumor, and risk score.

The calibration curve then proved the nomogram’s efficacy.

Gene set variation analysis

To explore the potential molecular mechanisms affecting

prognosis, we performed functional enrichment analysis of genes

in high- and low-risk groups. The KEGG pathway was analyzed

to explore the differences in the biological processes between the

high and low-risk group using the R packages “GSVA.”

Tumor microenvironment and immune
landscape analysis

To confirm whether the CRs characteristics of the risk model

were correlated with the tumor microenvironment and tumor
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immunity, we assessed the differences in ESTIMATE scoring and

immune cell infiltration between the two groups. The

ESTIMATE algorithm calculated immune, stromal, and

ESTIMATE scores in different subtypes by using the R

package “estimate.” Correlation tests were used to calculate

the correlation between the three signature genes and risk

scores and the expression of immune checkpoint-associated

genes. The TIDE algorithm was applied to predict the

response to immunotherapy in both high and low-risk groups.

Analysis of signature genes in the risk
model

To observe the distribution of TCGA samples in terms of

subtyping and risk grouping, we performed an analysis using R

packages “ggalluvial” and “ggplot2,” and presented the results

with a Sankey diagram. The distribution of 80 TCGA UM

patients in subtypes and risk subgroups was statistically and

consistently analyzed, and the results were presented in a 2 ×

2 contingency table, while SPSS software was applied to calculate

the kappa coefficient to verify the consistency of the two

classifications. In addition, we compared whether risk scores

differed between subtypes, and the expression and survival

analysis of signature genes in risk models between risk

subgroups was done by R packages “limma” and “survminer.”

Dividing the dataset samples into high and low gene expression

groups by the median value of characteristic gene expression

(which varies across datasets).

Statistics analysis

All statistical analyses were performed in R software (version

4.2.0). p < 0.05 was considered statistically significant unless

otherwise stated. The consistency test was calculated by SPSS

software, and a kappa coefficient (κ) greater than 0.61 indicated a

good agreement [42, 43].

Results

Detailed clinical data from three study
cohorts

A total of three cohorts were used in this study: 80 UM

samples that came from TCGA-UM. The datasets

GSE22138 with 63 samples and GSE84976 with 28 samples.

The detailed baseline data, clinical and pathological

characteristics, and survival time of the three cohorts were

presented in Table 1. Three data sets were calibrated by

combat functions, and PCA showed successful correction of

batch effects (Supplementary Figure S1).

Typing and analysis of CRs-based
subtypes

First, the univariate Cox regression analysis identified

111 CRs genes that were significantly associated with UM

prognosis, and the results of the analysis are shown in

Supplementary Table S2. Then, based on the expression of

these 111 genes, the TCGA samples were divided into two

subtypes (namely C1, n = 41, and C2 n = 39) by NMF

analysis according to the results of the heatmap of subtypes

(Figure 1A). As shown by the results of PCA analysis (Figure 1B),

80 patients were well grouped into two distinct subtypes. The

Kaplan-Meier (KM) curve results showed that the C2 subtype

was the high-risk group with significantly shorter OS and PFS

(p < 0.001) (Figures 1C, D). These results indicated that TCGA-

UM can be classified based on prognosis-related CRs genes.

To further explore the differences between these two

subgroups, we analyzed the distribution of prognosis-related

CRs genes and clinical traits among different subtypes. As the

results in Figure 2A showed that the expression of prognosis-

related CRs genes showed a difference between the two

subgroups, with differences in tumor stage and tumor

diameter among clinical traits (p < 0.05) (Figure 2B). The

results indicated that subgroup C2 had a distinct pattern of

immune infiltration compared to subgroup C1 (Figure 2C), and

the results of the analysis of tumor microenvironment and

immune infiltration levels between the two subtypes are

shown in Figure 2D, the stromal, immune, and estimate

scores of the C2 subgroup were higher than those of the

C1 subgroup, and the differences were statistically significant

(p < 0.05). The results of the different KEGG pathways within the

two subtypes showed that subgroup C1 was highly enriched in

substance metabolism (including pyrimidine metabolism, amino

sugar and nucleotide sugar metabolism, and sulfur metabolism),

and in addition, the C2 subgroup was also highly enriched in

apoptosis, P53 signaling pathway, and O-glycan biosynthesis

(Figure 2E), all of which KEGG pathways are closely

associated with tumors. Furthermore, subgroup C2 had a

significantly higher abundance of immune cells—including

CD8 T cells, activated memory CD4 T cells, follicular helper

T cells, and Macrophages M1, while the abundance of immune

cells (including resting memory CD4 T cells and resting Mast

cells) was significantly higher in subgroup C1 than in subgroup

C2 (Figure 2F). These results suggest that the two subgroups have

different characteristics in terms of the KEGG pathway, tumor

microenvironment, and immune infiltration level.

Selection of key CRs genes

The PPI network of prognostic-related CRs genes were

shown in Figure 3A, with the help of the String database

analysis and Cytoscape software, direct or indirect functional
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TABLE 1 The detailed baseline data and clinical characteristics of the three cohorts.

Characteristics Training cohort Validation cohort

(TCGA-UM, n = 80) GSE22138 (N = 63) GSE84976 (N = 28)

Age at diagnosis, years

≤65 46 36 13

>65 34 27 15

Gender

Female 35 24 —

Male 45 39 —

Stage

Stage I 0 — —

Stage II 36 — —

Stage III 40 — —

Stage IV 4 — —

T

T1 0 — —

T2 5 — —

T3 36 — —

T4 39 — —

N

N0 76 — —

Unknown 4 — —

M

M0 73 — —

M1 4 — —

Unknown 3 — —

Tumor location

Posterior to equator 67 54 —

Anterior to equator 5 3 —

All over the eye 8 1 —

Unknown 0 5 —

Tumor diameter

≤15 mm 24 27 —

>15 mm 55 26 —

unknown 1 10 —

Tumor thickness

≤10 mm 37 12 —

>10 mm 43 51 —

Extrascleral extension

Yes 7 5 —

No 68 48 —

Unknown 5 10 —

Person neoplasm cancer status

Tumor free 56 — 28

With tumor 9 — 0

Unknown 15 — 0

OS(years) 0.01~7.12 — 1.17~13

PFS(years) 0.01~6.84 0.01~10.05 —
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interactions of proteins were visualized, and core genes were

specifically marked (the darker the red color, the higher the

number of nodes). The names and number of nodes of the key

genes are shown in Figure 3B, and these 40 genes were defined as

key CRs genes for subsequent study analysis.

Establishment and validation of CRs-
based signature risk model

First, the random grouping of the TCGA training and test

groups was reasonable, with no bias in the selection of clinical

traits (p > 0.05). Statistical data of each group are shown in

Table 2. Then, LASSO regression analysis successfully screened

out 5 CRs including CDK2, CUL1, RUVBL1, SIRT3, SMARCD3,

and multifactorial Cox analysis was performed on these 5 genes

(Figures 3C, D), and finally, a risk model consisting of 3 genes

(RUVBL1, SIRT3, and SMARCD3) were successfully constructed

(Table 3).

Risk score = (−0.52462896083222 × RUVBL1 expression) +

(−1.12003130376948 × SIRT3 expression) +

(0.837694828472529 × SMARCD3 expression).

The median risk score (1.324375242) of the TCGA training

group was used as the threshold to distinguish the high-risk

group from the low-risk group. Based on the grouping, a total of

five cohorts were available for assessing and validating the

FIGURE 1
Typing and Identification of CRs-based Subtypes: (A) The cluster heatmap of tumor subtypes. (B) PCA showed a significant difference between
the two subtypes. (C) Survival curves of overall survival for patients with two subtypes. (D) Survival curves of progression-free survival for patients with
two subtypes.
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prognostic value of the model in this study, including the TCGA

training group (N = 56), the TCGA testing group (N = 24), the

TCGA all group (N = 80) and two independent datasets

GSE22138 (N = 63) and GSE84976 (N = 28).

Validation of the risk model

The results of Kaplan-Meier survival curves for all datasets

are shown in Figures 4A–F, patients with a high-risk score tended

FIGURE 2
Different characteristics between two subtypes. (A) The heatmap of expression levels of prognosis-related CRs genes and clinical traits in the
two subgroups. (B) Percentage distribution of clinical traits with significant differences between the two subtypes. (C) The ssGSEA analysis of the
immune cell infiltration level in the two subgroups. (D) Difference analysis of TME scores. (E) KEGG pathway analyses of GSVA in the two subgroups.
(F) Boxplot of the abundance of immune cells in the two subgroups. **p < 0.01, ***p < 0.001.
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to have a lower survival probability and die (or metastasis) earlier

than those with a low-risk score. The AUC values for the rest of

the dataset exceeded 0.7, except for the 1-year and 5-year AUC

values of 0.655 for GSE22138. The results suggest that our risk

model has a good predictive effect on the prognosis of UM

patients.

In the 3-year ROC curves, the AUC values for risk scores

were greater than those for other clinical traits, suggesting that

the use of risk scores predicted the survival of UM patients

better than other clinical traits (Figure 5A). Furthermore, we

developed a prognostic nomogram for estimating the UM

patients’ survival likelihood (Figure 5B). This prognostic

nomogram could systematically anticipate the 1-, 2-, and 3-

year OS of UM patients. The calibration curve showed that

actual results were consistent with predicted results

(Figure 5C).

FIGURE 3
Screening of key CRs genes and construction of risk model. (A) The PPI network of prognostic CRs genes. (B) The names and number of nodes
of the top 40 genes in the PPI network. (C) Coefficient curve. Different colors represent different genes. (D) The minimum lambda value of the lasso
model, λ = 5, was determined at the minimum deviation from the partial likelihood, and five genes were available for the analysis.
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Gene set variation analysis

The GSVA results displayed in Figure 6A, the high-risk

group genes are enriched in ABC transporters, apoptosis,

RIG-I-like receptor signaling pathway, cell-cytokine receptor

interaction, glucose metabolism, pyrimidine metabolism, and

sulfur metabolism pathways. These pathways are closely

associated with tumor development, and the ABC transporters

were closely related to the multidrug resistance (MDR) of the

tumor.

Tumor microenvironment and immune-
correlation analysis of the model

For confirming if the risk model was associated with

tumor microenvironment and tumor immunity, we analyzed

the differences in TME scoring, immune cells, and immune

checkpoint gene expression between the two groups. As

shown in Figure 6B, the results of the ESTIMATE analysis

showed that the TME-related scores of the high-risk group

were higher than those of the low-risk group. Moreover, we

used the ssGSEA method for evaluating differences in

immune cell infiltration between the two groups. The

heatmap of immune cell expression is shown in

Figure 6C, and the different analysis results are shown in

Figure 6D. As Figure 6D indicates, the expression of T cells

CD8, T cells CD4 memory resting, T cells CD4 memory

activated, T cells follicular helper, NK cells resting,

Monocytes, Macrophages M1, Macrophages M2 and Mast

cells resting had significant differences between the two

groups. Among them, within the high-risk group, T cells

CD8, T cells CD4 memory activated, T cells follicular helper,

and Macrophages M1 proportion were significantly

increased, while the opposite results occurred in T cells

CD4 memory resting, NK cells resting, Monocytes,

Macrophages M2, and Mast cells resting proportions.

Additionally, the results of correlation analysis

demonstrated that the risk score and the expression of

SMARCD3 were positively correlated with the expression

of many immune checkpoints (Figure 6E), and as Figure 6F

indicates, significant differences were found in immune

checkpoint expression. Many immune checkpoints were

upregulated in high-risk subgroups, such as PDCD1/PD-

TABLE 2 Statistical analysis of clinical features of a randomized grouping of TCGA dataset.

Covariates Type Training group Testing group Total group p-value

Age ≤65 33 (58.93%) 13 (54.17%) 46 (57.5%) 0.8823

>65 23 (41.07%) 11 (45.83%) 34 (42.5%)

Gender Female 23 (41.07%) 12 (50%) 35 (43.75%) 0.6229

Male 33 (58.93%) 12 (50%) 45 (56.25%)

Stage Stage II 28 (50%) 8 (33.33%) 36 (45%) 0.0975

Stage III 24 (42.86%) 16 (66.67%) 40 (50%)

Stage IV 4 (7.14%) 0 (0%) 4 (5%)

M M0 50 (89.29%) 23 (95.83%) 73 (91.25%) 0.4047

M1 4 (7.14%) 0 (0%) 4 (5%)

Unknown 2 (3.57%) 1 (4.17%) 3 (3.75%)

N N0 53 (94.64%) 23 (95.83%) 76 (95%) 1

Unknown 3 (5.36%) 1 (4.17%) 4 (5%)

T T2 5 (8.93%) 0 (0%) 5 (6.25%) 0.3081

T3 25 (44.64%) 11 (45.83%) 36 (45%)

T4 26 (46.43%) 13 (54.17%) 39 (48.75%)

TABLE 3 Genes in the prognostic signatures of the risk model.

Gene symbol Full name Risk coefficient

RUVBL1 RuvB-like AAA ATPase 1 −0.52462896083222

SIRT3 Sirt3, Silent Mating Type Information Regulation 2 Homolog 3 −1.12003130376948

SMARCD3 BAF60C/SWI-SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3 protein 0.837694828472529
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L1, BLTA, CTLA4, LAG3, CD276, TNFRSF25, IDO1,

SIGLEC7, TIGIT, LILRB2, and so on. Moreover, the TIDE

score of the high-risk group was significantly lower than that

of the low-risk group (p < 0.01) (Figure 6G), which suggested

that patients in the high-risk group may have a better

response to immune checkpoint blockade (ICB) treatment.

FIGURE 4
Upper: Kaplan–Meier survival analyses based on the risk model. Bottom: 1 -, 3-, and 5-year ROC analyses based on the risk model. Overall
survival of patients in the TCGA training group (A), the internal validation group of the TCGA testing group (B), the entire TCGA dataset (C), and the
independent dataset GSE84976 (F). Progression-free survival of patients in TCGA dataset (D) and the independent dataset GSE22138 (E).
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Analysis of signature genes in the risk
model

First, we found the distribution and relationship of two

subgroups, two risk groups, and two clinical outcomes

(Figure 7A). And statistical and consistency analysis was

performed on 80 UM patients in TCGA for subtypes and risk

groupings, and the results were presented as a 2 × 2 contingency

table (Supplementary Table S3), and the result of the consistency

test Kappa coefficient (κ = 0.691) showed a substantial

consistency in the classification of UM samples by tumor

subtypes and risk groupings. We found a significant difference

between the two subgroups in risk score (Figure 7B).

Additionally, the relative expression of the signature gene

SMARCD3 was higher in the poor prognosis group (C2 and

high-risk group), and RUVBL1 expression in the better prognosis

group (C1 and low-risk group) in the three datasets, but the

SIRT3 expression was higher in the TCGA subtype and the group

with good prognosis in the dataset GSE22138, while no difference

was found in the risk group of the dataset GSE84976 (Figures

7C–E). Interestingly, the difference analysis results of the three

signature genes between the group’s metastasis and non-

metastasis in data set GSE22138 are shown in Figure 7F, the

SMARCD3 expression is different, and the expression is higher in

the group with metastasis. Moreover, the lower RUVBL1 and

SIRT3 expressions were significantly correlated with poor

survival probability (Figures 8A–C, E–G), and the higher

expression of SMARCD3 was significantly correlated with

poor survival probability (Figures 8I–L). Notably,

RUVBL1 and SIRT3 expressions were not associated with

progression-free survival in dataset 22138 (Figures 8D, H).

These results suggest that the SMARCD3 gene may be closely

associated with the progression of UM.

Discussion

UM is the most common primary malignant intraocular

tumor in adults and is characterized by high mortality (>95%),

high metastasis (>50%), and poor prognosis within 5 years,

making the search for effective biomarkers for accurate

diagnosis, assessing prognosis and guiding treatment crucial

[44]. CRs play various roles in tumorigenesis. It is a

diagnostic and prognostic marker for many cancers [45–50].

In this study, we synthesized and analyzed the UM dataset

collected from TCGA and GEO and developed a risk model for

UM prognosis consisting of 3 CRs. Unlike other tumors, the UM

dataset lacks normal tissue, and we used the NMF method to

classify UM patients into two subtypes. The results of the survival

analysis showed significant differences in overall survival and

progression-free survival between the two subtypes. The results

confirm that the expression of prognosis-related CRs based on

the prognosis helps to identify UM subtypes. We obtained a risk

model by the LASSO Cox regression model before which we

improved the generalization ability of the model by preventing

“overfitting” by randomly grouping the TCGA dataset. The

survival analysis of the model was statistically significant in

both the training and validation cohorts. The results of ROC

curves comparing risk scores with other clinical traits for

prognosis prediction of UM also confirmed the better

prediction accuracy of the risk model, while the nomogram

constructed based on clinical characteristics and risk scores

could systematically predict OS of UM patients.

We further analyzed the TME and immune cell infiltration

differences in subtypes and risk subgroups. Immune cells and

stromal cells are the two major non-tumor components of the

TME, and the ratio of these two cells has an important impact on

tumor prognosis. ESTIMATE (Estimation of STromal and

FIGURE 5
Prognostic assessment efficiency comparison of the ROC curve and construction of the nomogram based on risk score and clinical factors. (A)
ROC curve analysis at 3 years. (B) The nomogram to predict the 1-, 2- and 3-year survival risk of UM patients. (C) Calibration curve for the 1-, 2-, and
3-year predicted survival nomogram. *p < 0.05, ***p < 0.001.
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FIGURE 6
Tumor microenvironment and immune-related analysis in two groups. (A) KEGG pathway analyses of GSVA in the two groups. (B) Difference
analysis of TME scores in two groups. (C) The ssGSEA analysis of the immune cell infiltration level in the two subgroups. (D) Comparison of immune
cell infiltration in two groups. (E) Correlation of risk score and 3 risk model-related genes with the expression of immune checkpoints. (F)
Comparison of the expression of immune checkpoints in two groups. (G)Difference analysis of TIDE score in two groups. *p < 0.05, **p < 0.01,
***p < 0.001.

Pathology & Oncology Research Published by Frontiers12

Li et al. 10.3389/pore.2023.1610980

https://doi.org/10.3389/pore.2023.1610980


Immune cells in MAlignant Tumour tissues using Expression

data) was calculated by analyzing transcriptional data from

cancer samples to calculate the proportion of relevant

immune, stromal, and tumor cells in the TME [51]. In our

study, stromal score, immune score, and ESTIMATE score

were significantly higher in the poor prognosis groups than in

the better prognosis groups, suggesting that the prognosis of UM

was associated with non-tumor cell infiltration. It has been

demonstrated that the poor prognosis of UM is positively

correlated with immune cell infiltration [52], so we further

analyzed the differences in immune cell infiltration. The

infiltration of T-cell CD8, T-cell CD4 memory activation,

T-cell follicular helper cells, and macrophages was higher in

the poorer prognosis group (C2 and high-risk group) than in the

better prognosis group (C1 and low-risk group). These types of

immune cells were also closely associated with tumor

development. For example, CD8+ T cells themselves can

selectively detect and eradicate cancer cells, but tumors

continue to develop when they coexist with tumor cells, which

is associated with dysfunctional tumor-responsive CD8+ T cells

[53]. Accumulation of T follicular helper (Tfh) cells has positive

or negative prognostic effects in different human cancers. In

melanoma, Tfh cells exert an immunosuppressive function and

suppress the function of CD8+ T cells. Additional studies have

shown that high Tfh levels are associated with an increase in

CD8+ T cells and that CD8+/Tfh crosstalk plays an important

role in shaping the antitumor immune response generated by

immunotherapy [54–56]. Infiltration of CD4 memory-activated

T cells may be a poor prognostic factor in many cancers [57–60].

In cutaneous melanoma, high infiltration of CD4 memory-

activated T cells promotes melanoma metastasis [61].

Macrophages play an important role in tumorigenesis and

metastasis [62, 63]. In uveal melanoma, macrophages are a

negative prognostic factor for it [64]. The mechanisms by

which they influence the progression and prognosis of UM

need further investigation. In addition, we performed a TIDE

analysis between the high- and low-risk groups. Tumor immune

dysfunction and rejection (TIDE) is a computational framework

for identifying factors underlying both mechanisms of tumor

immune escape, which include, in some tumors, high levels of

cytotoxic T-cell infiltration but dysfunction of these T cells, and

in other tumors, immunosuppressive factors that may preclude

T-cell infiltration of the tumor [65–67]. The TIDE score can

predict the immune checkpoint suppression efficacy, and the

results of the TIDE score will better help physicians to select

patients more suitable for immune checkpoint blockade (ICB)

therapy [68]. Our study showed that the TIDE score was

significantly lower in the high-risk group than in the low-risk

FIGURE 7
Analysis of signature genes in the risk model. (A) Sankey diagram of the two subgroups, two risk groups, and two clinical outcomes. (B)
Differences in the risk scores between the two subgroups. (C) Differential expression of three signature genes in subtypes. (D,E) Differential
expression of three signature genes in risk groupings for datasets GSE22138 and GSE84976. (F)Differential expression of three signature genes in the
metastasis subgroup of GSE22138. *p < 0.05, **p < 0.01, ***p < 0.001.
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group, which also suggests that patients in the high-risk group

may be more effective when receiving ICB therapy. Many

immune checkpoint genes expression was higher in the high-

risk group with a poorer prognosis, and we showed significant

correlations between risk model scores and three signature genes

and many immune checkpoint genes expression, which also

suggests that patients in the high-risk group may be more

effective when treated with immune checkpoint blockade.

Our risk model consisted of RUVBL1, SIRT3, and

SMARCD3. These three genes have also been reported several

times in previous studies to play a role in the development of

tumors. Sirtuin 3(SIRT3)is the most talked about Sirtuin family

member in recent times (a family of NAD+-dependent

deacetylases that regulate signaling pathways involved in

cellular proliferation and differentiation, metabolism, response

to stress, and cancer. Recent studies have pointed out that

SIRT3 is a critical regulator of cell metabolism and played a

dual role in cancer, as it can act as a suppressor or promoter in a

variety of tumors [69], such as breast cancer, colon cancer, and

prostate cancer [70–76]. Our findings suggest that SIRT3may act

as a protective factor in the development of uveal melanoma,

which is similar to previous findings [77]. However, the specific

role and molecular mechanisms of SIRT3 in UM have not been

reported. SMARCD3 (SWI-SNF-associated, matrix-associated,

actin-dependent regulator of chromatin, subfamily d, member

3 protein) is an important member of the SWI/SNF chromatin

remodeling complex, has a role in regulating gene expression [78,

79]. Previous studies have confirmed that SMARCD3 has a

cancer-promoting effect in ER+ breast cancer [80, 81]. The

results of the related bioinformatic analysis also suggested that

SMARCD3 was a prognostic and potential treatment target

maker for colorectal cancer, neuroblastoma, hematologic

malignancy, and uveal melanoma [82–85]. RUVBL1 belongs

to the AAA+ superfamily of ATPases and plays an important

FIGURE 8
Survival analysis of signature genes in the risk model. Red represents patients in the high gene expression group and blue represents patients in
the low-risk group. The x-axis represents the survival time and the y-axis represents the survival rate. (A–D) Survival analysis of OS and PFS in the
RUVBL1 expression subgroup. (E–H) Survival analysis of OS and PFS in the SIRT3 expression subgroup. (I–L) Survival analysis of OS and PFS in the
SMARCD3 expression subgroup.
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role in many cellular activities [86]. It has been widely reported as

an oncogenic factor. For example, it can accelerate the

progression of lung cancer by activating the RAF/MEK/ERK

pathway, and the high expression of RUVBL1 in mammary

carcinoma suggests a worse prognosis [87, 88]. However, a

recent study found that a decrease in RUVBL1 promoted the

progression of hepatocellular carcinoma [89]. In our study,

SMARCD3 expression was negatively correlated with

prognosis. OS and PFS were significantly different between

high and low expression groups, while SMARCD3 expression

levels differed both between subtypes and between risk

subgroups, with higher SMARCD3 expression levels in the

poorer prognosis group and higher SMARCD3 expression

levels in the metastatic group in dataset GSE22138. The

expression of SIRT3 and RUVBL1 was positively correlated

with prognosis, with differential and survival analyses showing

opposite trends to SMARCD3. These results also suggest that

SMARCD3 may play a facilitating role in UM progression, while

SIRT3 and RUVBL1 play a protective role. This of course

requires further experiments to verify.

Notably, we pioneered the construction of a riskmodel consisting

of three CRs genes that can predict the prognosis of UM. Our risk

model consists of only three genes, which reduces the cost of clinical

testing and improves the possibility of clinical application. Our

research offers new insight into the projection of UM but still has

some limitations. First, the sample data in this study were from

predominantly white Western countries, and there may be genetic

inheritance differences. Second, the lack of normal or paracancerous

tissues comparedwith tumor tissuesmade it impossible to observe the

expression of the three characteristic genes in normal and tumor

tissues, which needs to be demonstrated with more samples. In

addition, all three genes included in our risk model are involved

in tumor biological processes. However, the mechanism of how these

CRs regulate the biological behavior of UM cells needs to be validated

experimentally.

Conclusion

In conclusion, we successfully constructed a risk model

consisting of only three signature chromatin regulators that

are valuable in predicting the prognosis of uveal melanoma

patients. In addition, the model interacts closely with the

tumor immune environment and TIDE score results, which

may facilitate the development of new therapies for uveal

melanoma treatment.
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