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Abstract
A growing number of studies have suggested that genetic variants affecting the micro-RNA- binding mechanisms (miRSNPs)
constitute a promising novel class of biomarkers for prostate cancer (PCa) biology. Among the most extensively studied
miRSNPs in the context of cancer is the variation rs4245739 in the MDM4 gene, while a recent large-scale analysis revealed
significant differences in genotype distributions between aggressive and non-aggressive disease for rs1058205 in KLK3 and
rs1010 in VAMP8. In this study, we examined a total of 1083 subjects for these three variants using Taqman® SNP Genotyping
Assays. Three hundred and fifty-five samples of peripheral blood were obtained from patients with PCa and 358 samples from
patients with benign prostatic hyperplasia (BPH). The control group consisted of 370 healthy volunteers. Comparisons of
genotype distributions among PCa and BPH patients, as well as between PCa patients and healthy controls, yielded no evidence
of association between the analyzed genetic variants and the risk of developing PCa. However, all three tested genetic variants
have shown the association with the parameters of PCa progression. For KLK3 variant rs1058205, minor allele C was found to
associate with the lower serum PSA score in PCa patients (PSA > 20 ng/ml vs. PSA < 10 ng/ml comparison, Prec = 0.038;
ORrec = 0.20, 95%CI 0.04–1.05). The obtained results point out the potential relevance of the tested genetic variants for the
disease aggressiveness assessment.
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Introduction

Prostate cancer (PCa), the second most frequent malignancy
in men worldwide, accounted 1.276.106 new cases and
caused 358.989 deaths (6.7% of all deaths caused by cancer
in men) in 2018 [1]. The well-established risk factor for PCa,
apart from age and ethnicity, is family-history of the disease
[2]. Rarely occurring but high-penetrant genetic variants, as
well as commonly occurring low-risk variants, both contribute
to genetic basis of PCa. Genome wide association studies
(GWASs) have been invaluable in the discovery of these com-
mon variants associated with PCa susceptibility. In the largest
PCa GWAS to date and the meta-analysis reported recently

[3], 63 novel PCa susceptibility loci were identified, which
raised the total number of known loci from GWAS to around
170 (GWAS Catalog) [4]. However, these commonly occur-
ring low-risk variants can explain only about 28.4% of the
familial relative risk for PCa, suggesting that additional
SNPs remain to be identified [3]. Another approach to the
identification of novel PCa risk loci is through candidate-
gene based studies, with plausible candidates emerging from
the research of the molecular pathogenesis of malignant dis-
eases. Therefore, microRNA-based mechanisms have been
recognized as a promising field of carcinogenesis research,
including the case-control studies focusing on genetic variants
affecting the RNA interference process [5].

MicroRNAs (miRNA) are a class of trans-acting RNAs
that bind to cis-regulatory elements in their target mRNAs
and negatively regulate their expression either through
degrading/destabilizing the mRNA or by inhibiting their
translation [6]. Target selection is critically dependent on the
sequence complementarity between the miRNA nucleotides
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2–8, referred to as the miRNA seed site, and the miRNA-
binding elements usually found on the 3’UTR of the
mRNA. Because of the uniqueness and complexity of the
miRNA-target recognition, genetic variants play an important
role in the regulation of expression of miRNA targets, as well
as in all the other aspects of miRNA biogenesis and function.
There are two scenarios by which miRNA-related genetic var-
iants are implicated in cancer etiology: variants creating a loss-
of function or gain-of-function event [7]. The first scenario
refers to the inhibition of the expression or the functional
activity of a tumor-suppressive miRNAs, while the latter one
presumes the opposite effects on the activity of oncogenic
miRNAs. By both of these mechanisms, genetic variants re-
lated to miRNA functions may have profound effects on
cancerogenesis. Direct effects of genetic variants on
microRNA function are based on the alterations in pri-
miRNA and pre-miRNA processing, as well as in mature
RNA activities. Furthermore, genetic variants in regulatory
regions may affect miRNA transcription rates, while those
located in mRNAs may create or destroy a miRNA-binding
site. Among the most extensively studied genetic variants are
those located in the seed region or seed-complementary site,
which are predicted to elicit cancer phenotype by severely
affecting the target selection [8, 9].

In our previous reports, we investigated the association be-
tween genetic variants potentially affecting the transcriptional
rate and/or processing of miRNA precursors and PCa risk
[10–12]. The obtained results, suggesting the association be-
tween the analyzed variants and the risk of PCa onset and/or
progression, encouraged us to further examine the novel candi-
date genetic variants with the potential effect on RNA interfer-
ence, among which are variants located within microRNA bind-
ing sites. The role of this class of microRNA-related variants has
been previously evaluated for the genes of biologic relevance for
PCa [13, 14]. The most extensive study on this type of genetic
variants, a recent large-scale analysis of 2169 microRNA single
nucleotide polymorphisms (miRSNPs) and PCa risk and aggres-
siveness on 22,301 cases and 22,320 controls of European an-
cestry, revealed 22 miRSNPs associated with the risk of PCa
[15]. The most significant differences in genotype distributions
between aggressive and non-aggressive disease was reported for
rs1058205 in KLK3 and rs1010 in VAMP8. These genetic vari-
ants have also been functionally analyzed, revealing that KLK3
variant rs1058205 creates a putative binding site for miR-3162-
5p, whereas miR-370-5p was found to have a greater affinity for
the VAMP8 rs1010 A-allele. The same research group also re-
ported MDM4 genetic variant rs4245739 to be associated with
PCa risk by creating a new miRNA-binding site for multiple
miRNAs [16]. By using the reporter gene assay, it was found
that miR-191-5p and miR-887 have a specific affinity for the
rs4245739 C-allele, suggesting a mechanism by which the un-
targeted major allele A could associate with the increased risk of
PCa [16].

KLK3 gene encodes the prostate specific antigene (PSA), a
member of kallikrein family of serine proteases which is wide-
ly used as biomarker for PCa screening and monitoring the
disease progression [17]. Therefore, variants located within
this gene have been recognized as candidates for case-
control and case-only studies on PCa even before the reported
associations in the study by Stegeman et al. [15]. Namely, the
genetic variant rs1058205, a tag SNP in the 3′-UTR of KLK3
at the 19q13.33-locus, was previously associated with lower
serum levels of PSA in African-American and Swedish men
[18, 19]. Furthermore, contrasting results have been reported
regarding the impact of this genetic variant on PCa suscepti-
bility, suggesting its protective effect against PCa in at least
some populations [20, 21].

Another genetic variant showed to be strongly associated
with aggressive PCa by Stegeman et al. [15], rs1010 located in
VAMP8, has not been previously analyzed in other cancers or
validated in subsequent replication studies. The functional
significance of VAMP8 in the molecular basis of PCa remains
relatively poorly understood. Still, this protein was found to be
expressed in prostatic glandular epithelium [22], while it was
also determined that it plays a complex role in glucose metab-
olism and energy expenditure which makes it a potential can-
didate for carcinogenesis research [23].

As for the MDM4, this oncogene negatively regulates p53
and several other tumor suppressor genes in PCa and in the
range of malignant tumors. Therefore, the genetic variant
rs4245739 in MDM4 has been associated with the risk of
various human cancers, including ovarian, breast and small
cell lung cancer, as well as esophageal squamous cell carcino-
ma (ESCC) [24–27]. The meta-analysis by Xu et al. [28] in-
dicated that the rs4245739 A > C genetic variant tend to re-
duce the overall cancer risk, with the more prominent associ-
ation in Asian populations. Conversely, Gansmo et al. [29]
reported rs4245739 genetic variant to be associated with the
reduced risk of breast cancer but not to be associated with
either lung, colon cancer or PCa.

Considering the functional significance of the miRSNPs as
potential diagnostic and prognostic biomarkers of PCa, as well
as the previous contrasting findings on the effects of
rs1058205 and rs4245739 on PCa in different ethnic popula-
tions, the aim of the present study is to analyze their impact on
PCa susceptibility and aggressiveness in Serbian population.
Since the number of case-control studies on this issue is rela-
tively limited, we consider that performing the association
study in another population of European origin would contrib-
ute to the better understanding of the effect of these genetic
variants on PCa risk and progression. Furthermore, since the
effect of rs1010 located in VAMP8 on PCa risk and aggres-
siveness was shown in a single study, additional case-control
studies are needed in order to provide further data on this
issue, validate the obtained results and to elucidate the effect
of this genetic variant [15]. Therefore, rs1010 was also chosen
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for the analysis in the present study, focusing on the effects of
genetic variants located in microRNA-binding sites on pros-
tate carcinogenesis.

Material and Methods

This study used DNA samples obtained from the collections
of the Center for Human Molecular Genetics. The collection
consisted of patients treated in the period between 2008 and
2013 at Clinical Centre “Dr Dragiša Mišović Dedinje”,
Belgrade, Serbia and Clinical Centre “Zvezdara”, Belgrade,
Serbia. Research was conducted with the approval of ethics
committees of these medical institutions (18–5309/29 and 01–
1907/17). Written informed consent was obtained from all
participants included in this study. Experiments were conduct-
ed in accordance with the Helsinki Declaration of 1975.

In this study we examined a total of 1083 subjects. Three
hundred and fifty-five samples of peripheral blood were ob-
tained from patients with PCa and 358 samples from patients
with benign prostatic hyperplasia (BPH). The control group
consisted of 370 healthy volunteers who gave samples of ei-
ther buccal swabs or peripheral blood. The exclusion criteria
for potential controls were the presence of any self-reported
diseases and family history of PCa. After passing standard
clinical examination, which includes measurement of
prostate-specific antigene (PSA), digital rectal examination
(DRE), transrectal ultrasonography (TRUS), bone
scintiography and radiography and prostate biopsy patients
were separated into 2 groups as BPH or PCa patients. TNM
classification system was used to determine clinical stage of
tumor, while hematoxylin and eosin-stained slides of paraffin-
embedded prostate biopsy material were used to determine
histological type of cancer and Gleason score (GS).

Patients with PCa were selected into groups based on the
values of standard prognostic parameters: PSA at diagnosis
(PSA < 10 ng/ml; 10 ng/ml ≤ PSA ≤ 20 ng/ml; PSA >
20 ng/ml), Gleason score (GS < 7; GS = 7; GS > 7) and clini-
cal stage (T1; T2; T3/T4). Two groups of patients were
formed based on the presence of distant metastases.
According to criter ia recommended by European
Association of Urology (EAU), PCa patients were divided
into three groups. PCa patients with PSA < 10 ng/ml, GS <
7, and clinical stage T1-T2a comprised low-risk group, while
intermediate risk-group consisted of PCa patients with PSA
10–20 ng/ml or GS = 7 or clinical stage T2b-T2c. High-risk
group of PCa patients was defined by PSA > 20 ng/ml or
GS > 7 or clinical stage T3/T4. Patients with the presence of
distant metastasis were automatically classified into high-risk
group [30].

Genotyping of rs1010, rs1058205 and rs4245739 was per-
formed by using Taqman® SNP Genotyping Assays (Applied
Biosystems, Foster City, California, USA). Statistical analysis

of SNPs associations was performed by SNPStats software
[31]. Hardy–Weinberg equilibrium was assessed by the exact
test implemented in SNPStats software. Allelic and genotypic
associations were evaluated by unconditional logistic regres-
sion method with adjustment for age. Separate comparisons
were done for five different genetic models: allelic (log-addi-
tive), codominant, dominant, recessive and overdominant.
Odds ratio (OR) and its 95% confidence intervals (95% CI)
were used as risk estimates. The best-fitting models were de-
termined by using Akaike information criterion (AIC).

Results

The available clinical and pathological data on PCa patients
are shown in Table 1. According to the patient classification,
most of the men diagnosed with PCa had initial serum PSA
score higher than 20 ng/ml (42.9%), Gleason score 6 (53.8%)
or 7 (24%), as well as T2 clinical stage of primary PCa (55%).
Distant metastases were detected at diagnosis in about 16% of
PCa patients included in the study.

Table 1 Classification of patients with PCa based on the values of
standard prognostic parameters of disease progression, presence of
distant metastases and the risk of cancer progression

Standard prognostic parameter PCa patients; n (%)

PSA at diagnosis

< 10 ng/ml 100 (28.4)

10–20 ng/ml 101 (28.7)

> 20 ng/ml 151 (42.9)

Gleason score

4 7 (2)

5 16 (4.7)

6 184 (53.8)

7 82 (24)

8 31 (9.1)

9 19 (5.5)

10 3 (0.9)

TNM stage

T1 49 (15.9)

T2 170 (55)

T3/T4 90 (29.1)

Metastases

Distant (M+) 51 (15.8)

Regional (N+) or not detected 271 (84.2)

Risk of progression (EAU 2014)

Low 22 (6.6)

Medium 115 (34.3)

High 198 (59.1)

Abbreviations: PSA prostate-specific antigen
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Genotyping was successful in more than 98% of samples
for all three genetic variants tested. The acquired genotyping
data are presented in Table 2, suggesting the lack of deviations
from HWE in the control group (P = 0.09, P = 0.52 and P =
0.8, for rs1058205, rs1010 and rs4245739, respectively). For
all genetic variants included in this study, C allele was found
to be minor allele in Serbian population. Comparisons of ge-
notype distributions among PCa and BPH patients, as well as
between PCa patients and healthy controls, yielded no evi-
dence of association between the analyzed genetic variants
and the risk of developing PCa (Table 2).

When analyzing the potential association of rs1010 with
the initial PSA score among PCa patients, the obtained results
were found to be statistically insignificant. However, the as-
sociation of minor allele C of rs1058205 with the lower PSA
score was determined by comparing genotype distributions
between PCa patients with PSA > 20 ng/ml and PSA <
10 ng/ml (Prec = 0.038; ORrec = 0.20, 95%CI 0.04–1.05)
(Table 3). In contrast with these results, minor allele C of
rs4245739 was found to associate with higher initial serum
PSA scores in PSA 10–20 ng/ml vs PSA < 10 ng/ml compar-
ison, with the lowest AIC found for both dominant and log-
additive model (P = 0.026 for both models). At the same time,
statistical trend of significance was found for association of
rs4245739 with serum PSA score under log-additive and
dominant genetic models when genotype distributions among
patients with PSA > 20 ng/ml and PSA < 10 ng/ml were com-
pared (Plog-additive = 0.052, ORlog-additive = 1.54, 95%CI 0.99–
2.39; Pdom = 0.078; ORdom = 1.61, 95%CI 0.94–2.75)
(Table 3).

By comparing genotype frequencies among PCa patients
with GS = 7 and GS < 7, rs1010 minor allele C was shown to
be associated with higher GS, with statistical significance be-
ing reached for recessive and log-additive genetic models
(Prec = 0.036 and Plog-additive = 0.024). Similarly, comparisons
of rs4245739 genotype distributions among PCa patients with
GS > 7 and patients within both lower GS score categories
demonstrated the association of minor allele C with higher
GS. The statistical significance was found for multiple genetic
models tested, while the lowest AIC in both comparisons was
shown for dominant model (Table 4).

The comparisons of rs1058205 genotype frequencies
among PCa patients with T2 and T1 clinical stages, as well
as with T3/4 and T1 stages, demonstrated the protective effect
of minor allele C against primary PCa progression to higher
TNM stage. In both tests, statistical significance of association
was shown for multiple genetic models, while the lowest AIC
score suggested the over-dominant being the best-fitting one
(Table 5). When analyzing the association of rs1010 with
TNM clinical stage of primary PCa, statistically significant
results were obtained for multiple genetic models in the com-
parison of genotype distributions among patients with T3/4
and T2 stages. Nevertheless, the opposite direction of the

effect of heterozygous and CC homozygous genotype was
determined, while the recessive model was found to be the
best-fitting one, according to AIC score (Prec = 0.017;
ORrec = 2.08, 95%CI 1.14–3.81). At the same time, C allele
of rs4245739 associated with higher TNM clinical stage of
primary PCa under recessive genetic model, as determined
in T3/4 vs. T1 comparison (Prec = 0.033; ORrec = 6.28,
95%CI 0.77–50.85). Statistical significance was also reached
for the association under codominant model, with the slightly
higher AIC score (Pcodom = 0.044) (Table 5).

Contrary to these results, the genetic variants tested in this
study were not found to be associated with the presence of
distant PCa metastases (results not shown). Also, tests of as-
sociation with the risk of PCa progression yielded no statisti-
cal significance. Nevertheless, statistical trend was obtained
for the association of rs4245739 minor allele C with higher
PCa aggressiveness, as determined in both high-risk vs. low-
risk, as well as in intermediate-risk vs. low-risk disease com-
parisons. The lowest AIC in these tests was determined for
log-additive genetic model (Table 6).

Discussion

Single nucleotide variants (SNVs) are the most common
source of variation within the human genome, with approxi-
mately 10 million identified so far, occurring every several
hundred base pairs (every 100–300 nucleotides) [32].
Taking into account these results from the genomic sequenc-
ing project, researchers in the area of cancer genetics have
focused on this type of genetic variants in their pursuit for
the sources of heritability of malignant diseases. The vast ma-
jority of cancer-associated loci originated from genome-wide
approach in the case-control study design, which was enabled
by the technological improvements allowing the high-
throughput SNV analyses. Even though the association of
functional SNVs in gene coding regions with cancer is well
known, it accounts for only a very small proportion of SNVs
identified by GWAS. Namely, estimations are that 93% of
functional SNPs in the GWAS catalogue are in the non-
coding regions, having significant effects on gene expression
by disrupting transcription regulatory sites or by affecting
posttranscriptional events, including the binding of miRNAs
[33].

MiRNAs are small non-coding RNAs (21-23 nt long) that
negatively regulate protein expression, either by inhibiting the
translation of the subsequent mRNA, or by inducing the tran-
script destabilization. Since regulation by miRNAs is depen-
dent on base-pair complementarity, any slight change in the
miRNA-binding site in the 3`-UTR of a mRNA can have
profound downstream effects [34]. Not only that the genetic
variant, even a small one as a SNV, could significantly reduce
the binding affinity, but could also completely destroy the
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Table 2 Association of genetic variants within genes KLK3, VAMP8 and MDM4 with PCa risk

SNP Genetic
model

No of PCa patients
(%)

No of controls
(%)

No of BPH patients
(%)

PCa vs controls PCa vs BPH

OR (95% CI)
†

P value
†

AIC OR (95% CI)
†

P value
†

AIC

rs1058205
Codominant

TT 249 (70.3) 262 (70.8) 265 (74.2) 1.00 0.6 1008 1.00 0.61 982.6
CT 95 (26.8) 93 (25.1) 81 (22.7) 1.07

(0.76–1.49)
1.19

(0.84–1.68)
CC 10 (2.8) 15 (4) 11 (3.1) 0.69

(0.30–1.57)
1.00

(0.42–2.42)
Dominant

TT 249 (70.3) 262 (70.8) 265 (74.2) 1.00 0.92 1007 1.00 0.36 980.8
CT +CC 105 (29.7) 108 (29.2) 92 (25.8) 1.02

(0.74–1.40)
1.17

(0.84–1.63)
Recessive

TT + CT 344 (97.2) 355 (96) 346 (96.9) 1.00 0.35 1006.2 1.00 0.93 981.6
CC 10 (2.8) 15 (4) 11 (3.1) 0.68

(0.30–1.54)
0.96

(0.40–2.31)
Overdominant

TT + CC 259 (73.2) 277 (74.9) 276 (77.3) 1.00 0.63 1006.8 1.00 0.32 980.6
CT 95 (26.8) 93 (25.1) 81 (22.7) 1.09

(0.78–1.52)
1.19

(0.84–1.68)
Log-additive

– – – 0.97
(0.74–1.27)

0.81 1007 1.12
(0.84–1.49)

0.44 981

rs1010
Codominant

TT 124 (34.9) 119 (32.7) 118 (33.1) 1.00 0.34 1000.3 1.00 0.14 979.8
CT 161 (45.4) 184 (50.5) 184 (51.7) 0.84

(0.61–1.17)
0.83

(0.60–1.16)
CC 70 (19.7) 61 (16.8) 54 (15.2) 1.11

(0.72–1.70)
1.25

(0.81–1.95)
Dominant

TT 124 (34.9) 119 (32.7) 118 (33.1) 1.00 0.54 1000.1 1.00 0.64 981.5
CT +CC 231 (65.1) 245 (67.3) 238 (66.8) 0.91

(0.67–1.24)
0.93

(0.68–1.27)
Recessive

TT + CT 285 (80.3) 303 (83.2) 302 (84.8) 1.00 0.30 999.4 1.00 0.095‡ 979
CC 70 (19.7) 61 (16.8) 54 (15.2) 1.22

(0.84–1.79)
1.40

(0.94–2.07)
Overdominant

TT + CC 194 (54.6) 180 (49.5) 172 (48.3) 1.00 0.17 998.6 1.00 0.088‡ 978.8
CT 161 (45.4) 184 (50.5) 184 (51.7) 0.81

(0.61–1.09)
0.77

(0.57–1.04)
Log-additive

– – – – 1.02
(0.83–1.25)

0.87 1000.4 1.07
(0.86–1.32)

0.55 981.4

rs4245739
Codominant

AA 198 (56.2) 182 (51) 204 (57.3) 1.00 1.00
AC 131 (37.2) 144 (40.3) 122 (34.3) 0.84

(0.62–1.15)
0.32 987.2 1.10

(0.80–1.51)
0.53 978.1

CC 23 (6.5) 31 (8.7) 30 (8.4) 0.69
(0.39–1.22)

0.79
(0.44–1.41)

Dominant
AA 198 (56.2) 182 (51) 204 (57.3) 1.00 0.18 985.6 1.00 0.79 977.3
AC +CC 154 (43.8) 175 (49) 152 (42.7) 0.82

(0.61–1.10)
1.04

(0.77–1.40)
Recessive

AA+AC 329 (93.5) 326 (91.3) 326 (91.6) 1.00 0.28 986.3 1.00 0.34 976.5
CC 23 (6.5) 31 (8.7) 30 (8.4) 0.74

(0.42–1.29)
0.76

(0.43–1.34)
Overdominant

AA+CC 221 (62.8) 213 (59.7) 234 (65.7) 1.00 0.43 986.8 1.00 0.43 976.7
AC 131 (37.2) 144 (40.3) 122 (34.3) 0.89

(0.65–1.20)
1.13

(0.83–1.54)
Log-additive

– – – – 0.84
(0.66–1.06)

0.13 985.2 0.98
(0.77–1.24)

0.85 977.3

Abbreviations: PCa prostate cancer, BPH benign prostatic hyperplasia, OR odds ratio, CI confidence interval, AIC Akaike information criteria
† adjusted for age
‡ statistical trend of significance
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microRNA-binding site or create a new one [34].
Furthermore, since the first large-scale analysis focused on
the potential cancer associated SNVs in miRNA-binding sites
by Yu et al. [35], many genetic variants of this type were
found to associate with various human malignancies.

Among the most extensively studied miRSNPs in the con-
text of cancer is the variation rs4245739 in the 3’UTR of the
MDM4 gene [33]. At the same time, sequence alteration in the
KLK3 gene has been recognised as a candidate for genetic
association studies regarding PCa, due the functional signifi-
cance of PSA expressed from KLK3 gene. Namely, besides
being the serum biomarker of PCa, PSA is involved in the

proteolytic breakdown of the extracellular matrix in PCa tu-
morigenesis, which contributes to tumour invasion and metas-
tasis [17]. Both of these genetic variants were among the ma-
jor hits of a recent large-scale study on genetic variants located
within microRNA-binding sites potentially associated with
PCa. The mentioned study, performed by Stegeman et al.
[15], also identified a novel PCa-susceptibility locus within
the VAMP8 gene. More importantly, all three genetic variants
have been functionally characterized, providing potential
mechanism of action and the evidence that miRSNPs could
play significant roles in PCa development and progression
[15, 16]. Having all this in mind, as well as the importance

Table 4 Association of rs1010 and rs4245739 with Gleason score

Genetic
model

GS < 7
(%)

GS = 7
(%)

GS > 7
(%)

GS > 7 vs GS < 7 GS > 7 vs GS = 7 GS = 7 vs GS < 7

OR (95% CI)
†

P value
†

AIC OR (95% CI)
†

P value
†

AIC OR (95% CI)
†

P value
†

AIC

rs1010
Codominant
TT 77 (37.2) 22 (26.8) 18 (34) 1.00 1.00 1.00
CT 93 (44.9) 36 (43.9) 26 (49.1) 1.14

(0.57–2.27)
0.93 259.9 0.86

(0.38–1.94)
0.28 181 1.34

(0.73–2.48)
0.071‡ 347.2

CC 37 (17.9) 24 (29.3) 9 (17) 1.03
(0.41–2.55)

0.46
(0.17–1.26)

2.26
(1.12–4.55)

Dominant
TT 77 (37.2) 22 (26.8) 18 (34) 1.00 0.76 258 1.00 0.36 180.7 1.00 0.095‡ 347.7
CT+CC 130 (62.8) 60 (73.2) 35 (66) 1.11

(0.58–2.12)
0.70

(0.33–1.50)
1.61

(0.91–2.82)
Recessive
TT +CT 170 (82.1) 58 (70.7) 44 (83) 1.00 0.91 258.1 1.00 0.12 179.1 1.00 0.036* 346.1
CC 37 (17.9) 24 (29.3) 9 (17) 0.95

(0.42–2.16)
0.51

(0.21–1.21)
1.91

(1.05–3.45)
Overdominant
TT +CC 114 (55.1) 46 (56.1) 27 (50.9) 1.00 0.7 257.9 1.00 0.63 181.3 1.00 0.85 350.4
CT 93 (44.9) 36 (43.9) 26 (49.1) 1.13

(0.61–2.09)
1.19

(0.59–2.41)
0.95

(0.57–1.59)
Log-additive
– – – 1.03

(0.67–1.60)
0.88 258.1 0.69

(0.43–1.13)
0.14 179.4 1.50

(1.05–2.13)
0.024* 345.4

rs4245739
Codominant
AA 125 (60.7) 44 (54.3) 19 (36.5) 1.00 1.00 1.00
AC 68 (33) 31 (38.3) 29 (55.8) 3.15

(1.61–6.17)
0.0028* 246.8 2.29

(1.07–4.87)
0.091‡ 177.5 1.31

(0.76–2.26)
0.6 348

CC 13 (6.3) 6 (7.4) 4 (7.7) 1.96
(0.57–6.80)

1.83
(0.44–7.54)

1.31
(0.47–3.65)

Dominant
AA 125 (60.7) 44 (54.3) 19 (36.5) 1.00 8e-04* 245.4 1.00 0.03* 175.6 1.00 0.31 346
AC +CC 82 (39.3) 37 (45.7) 33 (63.5) 2.94

(1.54–5.61)
2.22

(1.07–4.62)
1.31

(0.78–2.20)
Recessive
AA+AC 193 (93.7) 75 (92.6) 48 (92.3) 1.00 0.82 256.5 1.00 0.81 180.2 1.00 0.75 347
CC 13 (6.3) 6 (7.4) 4 (7.7) 1.15

(0.35–3.75)
1.18

(0.31–4.55)
1.18

(0.43–3.22)
Overdominant
AA+CC 138 (67) 50 (61.7) 23 (44.2) 1.00 0.0011* 245.8 1.00 0.043* 176.1 1.00 0.38 346.3
AC 68 (33) 31 (38.3) 29 (55.8) 2.88

(1.52–5.48)
2.09

(1.02–4.30)
1.27

(0.74–2.17)
Log-additive
– – – 1.93

(1.20–3.13)
0.0071* 249.3 1.71

(0.96–3.06)
0.066‡ 176.9 1.21

(0.81–1.83)
0.35 346.2

Abbreviations: OR odds ratio, CI confidence interval, AIC Akaike information criteria
† adjusted for age
‡ statistical trend of significance
* statistically significant results are shown in bold
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Table 5 Association of rs1058205, rs1010 and rs4245739 with the clinical stage of localized PCa

Genetic
model

T1 (%) T2 (%) T3/
T4(%)

T2 vs T1 T3/T4 vs T1 T3/T4 vs T2

OR (95% CI) † P value
†

AIC OR (95% CI) † P value
†

AIC OR (95%CI) † P value
†

AIC

rs1058205
Codominant
TT 25 (51) 128

(75.7)
64 (71.1) 1.00 1.00 1.00

TC 23
(46.-
9)

37 (21.9) 22 (24.4) 0.33 (0.17–0.66) 0.0069* 227.6 0.36 (0.17–0.78) 0.022* 178.8 1.19
(0.65–2.19)

0.57 341.4

CC 1 (2) 4 (2.4) 4 (4.4) 0.83 (0.09–7.73) 1.67
(0.18–15.83)

2.00
(0.48–8.28)

Dominant
TT 25 (51) 128

(75.7)
64 (71.1) 1.00 0.0024* 226.3 1.00 0.018* 178.9 1.00 0.42 339.9

TC+CC 24 (49) 41 (24.3) 26 (28.9) 0.35 (0.18–0.69) 0.42 (0.20–0.87) 1.27
(0.71–2.26)

Recessive
TT + TC 48 (98) 165

(97.6)
86 (95.6) 1.00 0.86 235.5 1.00 0.41 183.8 1.00 0.37 339.8

CC 1 (2) 4 (2.4) 4 (4.4) 1.22
(0.13–11.25)

2.40
(0.26–22.22)

1.92
(0.47–7.86)

Overdominant
TT +CC 26

(53.-
1)

132
(78.1)

68 (75.6) 1.00 0.0016* 225.6 1.00 0.0064* 177 1.00 0.64 340.3

TC 23
(46.-
9)

37 (21.9) 22 (24.4) 0.33 (0.17–0.66) 0.36 (0.17–0.75) 1.15
(0.63–2.12)

Log-additive
– – – 0.45 (0.25–0.81) 0.0086* 228.7 0.57 (0.31–1.07) 0.08‡ 181.4 1.28

(0.79–2.08)
0.32 339.6

rs1010
Codominant
TT 16

(32.-
6)

58 (34.1) 31 (34.4) 1.00 1.00 1.00

CT 24 (49) 83 (48.8) 32 (35.6) 1.00 (0.49–2.06) 0.97 238 0.71 (0.31–1.58) 0.23 183.5 0.72
(0.40–1.31)

0.033* 336.6

CC 9 (18.4) 29 (17.1) 27 (30) 0.91 (0.36–2.32) 1.56 (0.59–4.13) 1.74
(0.88–3.45)

Dominant
TT 16

(32.-
6)

58 (34.1) 31 (34.4) 1.00 0.95 236.1 1.00 0.87 184.4 1.00 0.96 341.4

CT+CC 33
(67.-
3)

112
(65.9)

59 (65.6) 0.98 (0.49–1.93) 0.94 (0.45–1.98) 0.99
(0.58–1.69)

Recessive
TT +CT 40

(81.-
6)

141
(82.9)

63 (70) 1.00 0.82 236 1.00 0.13 182.2 1.00 0.017* 335.8

CC 9 (18.4) 29 (17.1) 27 (30) 0.91 (0.40–2.09) 1.90 (0.80–4.47) 2.08
(1.14–3.81)

Overdominant
TT +CC 25 (51) 87 (51.2) 58 (64.4) 1.00 0.91 236.1 1.00 0.14 182.3 1.00 0.039* 337.2
CT 24 (49) 83 (48.8) 32 (35.6) 1.04 (0.55–1.97) 0.59 (0.29–1.20) 0.58

(0.34–0.98)
Log-additive
– – – 0.96 (0.61–1.52) 0.86 236 1.19 (0.75–1.88) 0.46 183.9 1.26

(0.89–1.79)
0.19 339.7

rs4245739
Codominant
AA 25 (51) 99 (58.9) 51 (56.7) 1.00 1.00 1.00
AC 23

(46.-
9)

58 (34.5) 29 (32.2) 0.61 (0.32–1.19) 0.14 233.3 0.62 (0.30–1.28) 0.044* 180.2 0.97
(0.55–1.70)

0.45 340.1

CC 1 (2) 11 (6.5) 10 (11.1) 2.78
(0.34–22.72)

5.12
(0.62–42.48)

1.77
(0.70–4.43)

Dominant
AA 25 (51) 99 (58.9) 51 (56.7) 1.00 0.28 234.1 1.00 0.53 184.1 1.00 0.73 339.6
AC +CC 24 (49) 69 (41.1) 39 (43.3) 0.70 (0.37–1.34) 0.80 (0.40–1.62) 1.10

(0.65–1.84)
Recessive
AA+AC 48 (98) 157

(93.5)
80 (88.9) 1.00 0.18 233.4 1.00 0.033* 179.9 1.00 0.21 338.1

CC 1 (2) 11 (6.5) 10 (11.1)
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of miRSNPs for cancer aetiology, we questioned the effect of
rs1058205, rs1010, and rs4245739 on the risk for PCa devel-
opment and progression in Serbian population.

Since Stegeman et al. [15] identified rs1058205 as one of
the 22 variants associated with the PCa risk, as well as one of
the variants with the most significant effect on PCa

aggressiveness among the testedmiRSNPs, they also conduct-
ed the functional analysis. This genetic variant is located with-
in the region encoding the 3`-UTR of KLK3 mRNA and was
predicted to be functional, potentially creating an aberrant
miRNA-binding site for miR-3162-5p, miR-219-1-3p and
miR-4278. Therefore, reporter vector assay was used to test

Table 5 (continued)

Genetic
model

T1 (%) T2 (%) T3/
T4(%)

T2 vs T1 T3/T4 vs T1 T3/T4 vs T2

OR (95% CI) † P value
†

AIC OR (95% CI) † P value
†

AIC OR (95%CI) † P value
†

AIC

3.41
(0.43–27.27)

6.28
(0.77–50.85)

1.78
(0.73–4.38)

Overdominant
AA+CC 26

(53.-
1)

110
(65.5)

61 (67.8) 1.00 0.096‡ 232.5 1.00 0.086‡ 181.5 1.00 0.71 339.6

AC 23
(46.-
9)

58 (34.5) 29 (32.2) 0.57 (0.30–1.10) 0.53 (0.26–1.09) 0.90
(0.52–1.55)

Log-additive
– – – 0.89 (0.53–1.51) 0.68 235.1 1.10 (0.63–1.91) 0.74 184.3 1.18

(0.79–1.75)
0.42 339.1

Abbreviations: OR odds ratio, CI confidence interval, AIC Akaike information criteria
† adjusted for age
‡ statistical trend of significance
* statistically significant results are shown in bold

Table 6 Association of rs4245739 with the risk of cancer progression

Genetic
model

low-risk
(%)

intermediate-risk
(%)

high-risk
(%)

intermediate vs low-risk high vs low-risk high vs intermediate-risk

OR
(95% CI) †

P
value †

AIC OR
(95% CI) †

P
value †

AIC OR
(95% CI) †

P
value †

AIC

rs4245739
Codominant
AA 16 (72.7) 63 (55.3) 109 (55.6) 1.00 1.00 1.00
AC 6 (27.3) 44 (38.6) 71 (36.2) 1.87

(0.68–5.17)
0.13 124.3 1.79

(0.67–4.83)
0.091‡ 144.5 0.95

(0.58–1.55)
0.79 408.9

CC 0 (0) 7 (6.1) 16 (8.2) NA
(0.00-NA)

NA
(0.00-NA)

1.33
(0.51–3.44)

Dominant
AA 16 (72.7) 63 (55.3) 109 (55.6) 1.00 0.12 124 1.00 0.11 144.7 1.00 0.99 407.3
AC +CC 6 (27.3) 51 (44.7) 87 (44.4) 2.16

(0.79–5.95)
2.18

(0.81–5.81)
1.00

(0.63–1.60)
Recessive
AA+AC 22 (100) 107 (93.9) 180 (91.8) 1.00 0.11 123.8 1.00 0.066‡ 143.9 1.00 0.51 406.9
CC 0 (0) 7 (6.1) 16 (8.2) NA

(0.00-NA)
NA

(0.00-NA)
1.36

(0.54–3.44)
Overdominant
AA+CC 16 (72.7) 70 (61.4) 125 (63.8) 1.00 0.31 125.3 1.00 0.35 146.4 1.00 0.73 407.2
AC 6 (27.3) 44 (38.6) 71 (36.2) 1.67

(0.61–4.61)
1.58

(0.59–4.23)
0.92

(0.57–1.49)
Log-additive
– – – – 2.21

(0.87–5.62)
0.073‡ 123.1 2.22

(0.91–5.40)
0.055‡ 143.6 1.05

(0.73–1.53)
0.78 407.3

Abbreviations: OR odds ratio, CI confidence interval, AIC Akaike information criteria
† adjusted for age
‡ statistical trend of significance

2417Association of and  Genetic Variants within microRNA Binding Sites with Prostate Cancer:...KLK3, VAMP8 MDM4



the results of in silico analysis, revealing that the miR-3162-5p
has specific affinity for the rs1058205 T-allele. Protein, as
well as mRNA levels of KLK3, were also found to be de-
creased in the presence of over-expressed miR-3162-5p in
cells homozygous for T allele.

Our results are in contrast to those obtained by Stegeman
et al. [15], since we obtained no evidence of association be-
tween rs1058205 and PCa susceptibility. This observation
also contrasts the reported association between this genetic
variant and PCa risk in the meta-analysis by Ding et al. [36].
Still, in the present study, C allele was associated with the
lower serum PSA score among patients with PCa, which is
consistent with the results obtained by Penney et al. [21] in
their Caucasian American subjects. Still, their association of
rs1058205 with the serum PSA score was determined in con-
trol subjects, similarly as in the study by Stegeman et al. [15],
as well as in the study conducted by Savblom et al. [19] in
Swedish population. Furthermore, Bensen et al. [18] showed
association between rs1058205 and serum PSA level in their
African-American PCa patients. Given the relationship be-
tween KLK3 rs1058205 and serum PSA score, as well as the
importance of this standard prognostic and diagnostic param-
eter of PCa, it should be noted that rs1058205 may have im-
plications for PSA-based diagnostics and management proto-
cols, potentially requiring genotype-dependent adjustments of
PSA ranges [15]. The detected correlations potentially reflect
the effect of rs1058205 on the regulation of PSA expression
by regulatory factors other than miR-3162-5p, since this
microRNA requires T allele for inhibitory action, while C
allele was found to associate with the reduced serum PSA
score in previous and the present studies.

Similarly with the finding concerning serum PSA score, we
found that the rs1058205 minor allele C associates with lower
clinical stage of primary tumour, while for the other tested
associations statistical significance was not reached.
Stegeman et al. [15] did not perform the test of association
between genetic variants and TNM stages of primary PCa,
while they observed for the KLK3 rs1058205 allele-C a strong
association with the nonaggressive disease. Our results seem
to contradict these previous ones, but the criteria for aggres-
sive PCa differed in the present study and the one conducted
by Stegeman et al. [15]. Also, Chen, Xin [20] reported the TT
genotype of rs1058205 to be associated with moderate to
high-risk PCa in Chinese men. Still, they compared genotype
frequencies in their control group and in the groups of PCa
patients classified according to the risk of disease progression,
while wemade comparisons in a case-only manner. Also, they
compared just TC and TT genotype counts, excluding the
individuals with CC genotype and, therefore, not performing
the allelic association estimates. Another previous study, con-
ducted by Bensen et al. [18], suggested that rs1058205 is
associated with the PCa aggressiveness, but the statistically
significant results were obtained in their group of African-

American patients, while such association was not determined
for European-Americans. In their analysis, they used a similar
disease aggressiveness classification system as we did in the
present study. In contrast to our results, they found no associ-
ations between rs1058205 and TNM stage, while this genetic
variant was shown to associate with Gleason score in
European-American group of PCa patients [18].

The other most significant association with PCa suscepti-
bility and aggressiveness in the study by Stegeman et al. [15]
was found for rs1010 in VAMP8 gene. VAMP8 belongs to the
family of soluble N-ethylmaleimide-sensitive factor-
attachment protein receptors (SNAREs), essential proteins
for fusion of cellular membranes. This integral membrane
protein is involved in granule secretion, vesicle trafficking,
endocytosis and phagocytosis [37], while its direct function
in carcinogenesis is not yet known. Potentially, VAMP8 could
attribute to the Warburg effect, an important feature of malig-
nant transformation, including the one that occurs in prostatic
glandular epithelium [23]. To date, genetic variants in
VAMP8 have not been investigated for their relation with
human cancer, except for the study by Stegeman et al. [15].
Also, this genetic variant is in strong LD with a previous PCa
susceptibility GWAS hit [38].

The functional characterization of rs1010 showed that the
minor allele C of this genetic variant lowers the affinity of the
miR-370-5p for its binding site, as predicted in silico and
confirmed through reporter assay. Also, rs1010 showed a sta-
tistical trend of significance when genotype correlation with
transcript expression was evaluated [15]. Therefore, the mech-
anism underlying the potential involvement of rs1010 in the
genetic basis of PCa was proposed to rely on the action of
microRNA miR-370-5p, previously found to be
overexpressed in PCa tumours [15]. However, in our study,
we did not find any association between rs1010 and the risk of
developing PCa, which could reflect the potential differences
in ethnic backgrounds between the study groups included in
the present study and the previous one.

At the same time, rs1010 minor allele C was not found to
associate with the higher Gleason score in the present study.
Furthermore, when comparing genotype distributions among
patients stratified into groupswith T3/4 and T2 TNMcategories,
the same direction of association with clinical stage of primary
PCa was determined. We could not compare these results with
the data from other studies, since Stegeman et al. [15] did not
examine the effect of rs1010 on the values of standard prognos-
tic parameters of PCa, other than serum PSA score. Both of the
studies did not show the relation of rs1010 with the serum PSA
levels, while for the association of this genetic variant with PCa
aggressiveness discordant results were obtained. That is, we did
not show the association of rs1010 with the risk of PCa progres-
sion, but the association with Gleason score and the clinical
stage of disease could still suggest that the minor C allele has
contributive effect on the disease aggressiveness.
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Among the three genetic variants chosen for the analysis in
the present study, rs4245739 has been the most extensively
studied to date, due to the functional significance of MDM4
for malignant transformation process. The MDM4 protein
plays a major role in P53 tumour suppressor pathway through
negatively regulating its function [39].Maintaining the correct
levels of P53 is pivotal to a cell, as P53 is a crucial protein for
maintenance of genomic stability and control of the cell
growth and apoptosis. Furthermore, MDM4 interacts with
p21, a cyclin-dependent kinase inhibitor whose deregulation
is associated with the higher proliferation rate in PCa. By
binding to the transcription factor E2F1, MDM4 represses
its transactivation and induces the changes in the regulation
of cell cycle and apoptosis. Also, MDM4 inhibits the
transactivation of Smad3 and Smad4, components of TGF-
beta signalling, by which it further exhibits the promoting
activity on tumour growth [39, 40].

The genetic variant rs4245739 locates at the 3’UTR of
MDM4 and is found to create the illegitimate miRNA-
binding site. By using the reporter gene assays, Stegeman
et al. [16] have shown that miR-191-5p and miR-887 have
specific affinity for rs4245739 C-allele, presenting a mecha-
nism by which the untargeted A-allele may be associated with
the increased risk of PCa. Previously, Wynendaele et al. [41]
have obtained the similar results in their experiments involv-
ing ovarian cancer cells, also demonstrating the allele-specific
effects on the MDM4 mRNA targeting by miR-191-5p.
Therefore, this genetic variant, identified as a PCa susceptibil-
ity locus in GWA study [42], has been annotated as
microRNA-binding site variant, but other functional conse-
quences of this A > C substitution cannot be ruled out.

Besides GWAS on PCa, various other case-control studies
have also associated rs4245739 with the susceptibility to spe-
cific types of cancer, such as ovarian, breast cancer, ESCC,
SCLC and non-Hodgkin lymphoma [25–27, 41, 43]. Still,
different studies have found this variant to have weak or al-
most no effect on cancer risk in their case-control comparisons
[24, 29, 44–46]. Inconsistences in the results of these studies
investigating the association between rs4245739 and cancer
risk are found regarding not just the statistical significance of
the tested association, but also regarding the susceptibility
allele. For example, some studies, including those on PCa
and also meta-analyses on the association with cancer risk in
general, have reported the minor allele C of rs4245739 to be
associated with the decreased cancer risk [16, 28, 47]. On the
contrary, a study by Garcia-Closas et al. [26] reported the
same allelic variant to be associated with the increased breast
cancer risk, which is consistent with the previous data from
the other breast cancer GWASs [48, 49]. Still, Gansmo et al.
[29] have shown the reduced risk of breast cancer to be asso-
ciated with rs4245739 allele C in their Norwegian case-
control study, which matches the results Liu et al. [50] have
obtained in Chinese population. Other reports regarding the

association of rs4245739 with susceptibility to the specific
type of cancer and the disease outcomes have shown the op-
posite effects of the same allelic variant. For instance,
Wynendaele et al. [41] reported A-allele of rs4245739 in pa-
tients with ovarian cancer not expressing the estrogen receptor
to be associated with increased risk of recurrence and in-
creased risk of tumour-related deaths. Contrary to these find-
ings, Gansmo et al. [24] showed C-allele of rs4245739 to be
associated with increased risk of serious ovarian cancer.

Even though rs4245739 is a widely studied genetic variant
in terms of many cancers, its role in PCa development and
progression remains relatively poorly investigated, with only
several studies aiming to elucidate its relation to PCa. In the
present study, we found no evidence of association between
rs4245739 and the risk of PCa, which is in contrast with the
findings of Stegeman et al. [16], as well as with the results of
iCOGS GWAS [42]. Still, our results match the ones by
Gansmo et al. [29], who found the association of rs4245739
with PCa risk to be statistically insignificant. Furthermore, in
our study, minor allele C was found to associate with higher
PSA, higher GS, as well as with higher clinical stage of the
tumour. In line with these findings, we also observed a statis-
tical trend for the association of rs4245739 C-allele and higher
PCa aggressiveness. Since Stegeman et al. [16] and iCOGS
GWAS [42] also evaluated the association of this genetic var-
iant with serum PSA score, as well as with disease aggressive-
ness, we can conclude that our results significantly differ from
theirs. Still, the criteria for the evaluation of disease aggres-
siveness in our and the previous studies were discordant. On
the other hand, Gansmo et al. [29] did not provide any data on
the potential association of rs4245739 with the values of stan-
dard prognostic parameters of PCa, or with the risk of PCa
progression. For these reasons, our results on potential asso-
ciation of genetic variant rs4245739 with Gleason score and
clinical stages of primary PCa could not be compared with any
previously obtained results from other populations.

According to the results of the present study, all three tested
genetic variants have shown the association with the parame-
ters of PCa progression. Still, discordances with the previous
results were detected, which mainly refer to the lack of asso-
ciation with PCa susceptibility. Among the reasons for such
disparity are potential differences in the genetic background of
the tested populations, as well as in the environmental factors
affecting the PCa development and progression. As an illus-
tration of the ethnic differences, according to genetic variant
databases, the distributions of the alleles of these three genetic
variants are quite different between populations of European,
Asian and African descent. This could affect the power of the
specific studies and have consequence on the risk estimates.
Also, the results could be affected by the study design and the
participant recruitment criteria. As for the associations be-
tween the tested genetic variants and the PCa aggressiveness
parameters, the differences in subgrouping criteria could have
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attributed to the discordances in the obtained results, together
with the potential stage-specific effects of these genetic vari-
ants. Still, the main limitation of our study is its sample size,
even though more than 1000 participants were included. This
could have resulted in the lack of ability to validate the previ-
ously detected associations with PCa susceptibility.
Furthermore, the number of PCa patients in several subgroups
was small, which suggests that the obtained results should be
interpreted with caution. Still, the same direction of associa-
tion of the tested genetic variants with different parameters of
PCa progression point out their relevance for the disease ag-
gressiveness assessment. However, future studies with larger
sample sizes in populations of different origin are needed to
better clarify the potential association of genetic variants
rs1058205, rs1010 and rs4245739 with PCa.
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