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Abstract
To investigate the diagnostic performance of relative telomere length (RTL) in cell-free DNA (cfDNA) for endometrioid
endometrial cancer (EC). We measured RTL in cfDNA of 40 EC patients (65 ± 12 years) and 31 healthy controls (HC) (63 ±
13 years), excluding in both groups other oncologic and severe non-oncologic diseases to limit confounders. Circulating cfDNA
was extracted from serum using the QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany). After the quantitative real-time
polymerase chain reaction, telomere repeat copy number to single-gene copy number ratio was calculated. RTL in cfDNA was
found to be significantly lower in EC patients than in HC (p < 0.0001). The diagnostic performance of cfDNARTLwas estimated
with receiver operating characteristics (ROC) curve analysis, which showed a diagnostic accuracy for EC of 0.87 (95%CI: 0.79–
0.95, p < 0.0001). The cutoff cfDNA RTL value of 2.505 (T/S copy ratio) reported a sensitivity of 80.0% (95%CI: 64.35–90.95)
and a specificity of 80.65% (95%CI: 62.53–92.55). Significant differences of RTL among EC stages or grades (p = 0.85 and p =
0.89, respectively) were not observed. Our results suggest that cfDNA RTL analysis may be a diagnostic tool for EC detection
since the early stage, whilst its diagnostic performance seems unsatisfactory for cancer progression, staging, and grading.
However, further studies are needed to confirm these preliminary findings. In particular, future investigations should focus on
high-risk patients (such as those with atypical endometrial hyperplasia) that may benefit from this tool, because TL shortening is
not specific for EC and is influenced by other oncologic and non-oncologic diseases.

Keywords Endometrial cancer . Endometrial hyperplasia . cfDNA . Telomere length . Diagnosis . Biomarkers

Introduction

Endometrial cancer (EC) represents the most common gyne-
cologic malignancy in developed countries, with an age-

standardized incidence of approximately 13.6 per 100,000
women [1]. The prognosis of this cancer is usually favorable
in the early stage, with a 5-year overall survival rate approx-
imating 80–90%, but it decreases to 57–46% in patients with
advanced, high-grade tumors [2]. Although the many efforts
to identify non-invasive diagnostic tests characterized by op-
timal sensitivity and specificity for early EC detection, many
epigenetic or biochemical markers have not found a definitive
place in routine diagnostics so far [3–7].

Telomeres are highly specialized regions of repetitive nucle-
otide sequences coupled with proteins and located at each end
of a chromosome in eukaryotic cells [8]. In mammalians, the
repetitive DNA sequence (TTAGGG)n is highly conserved,
with an average length between 3 and 15 kb [9]. The most
important telomere function is protecting the chromosome ends
from fusion and degradation, thus deploying genomic stability
[10]. Telomere length (TL) is typically preserved by
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telomerase, a ribonucleoprotein reverse transcriptase [11].
When telomeres shorten or undergo a process of uncapping
by loss of proteins, the chromosome end is damaged, thus lead-
ing the way to the generation of DNA double-strand breaks and
chromosomal rearrangements. The consequent activation of
DNA repair events (DNA-damage response) and breakage-
fusion-bridge cycles can then lead to amplification and overex-
pression of sub-telomeric oncogenes [12]. Impaired genomic
stability, associated with the occurrence of both genetic and
epigenetic alterations, can hence predispose to neoplastic trans-
formation [13, 14]. Consistently, several studies showed that
both telomere shortening and impaired telomerase activity
was involved in the pathogenesis of a different type of cancers
[15–21]. Many epidemiological studies have then corroborated
these findings, by demonstrating that shorter TL is associated
with increased cancer incidence as well as with both all-cause
and cancer mortality [22–24].

Although TL is usually assessed in leukocytes, relative TL
(RTL) can also be measured in serum cell-free DNA (cfDNA)
[25]. Wu et al. described a significant reduction of repetitive
telomere sequences in serum cfDNA of patients affected by
breast cancer and suggested that TL could be considered a
biomarker for early cancer detection [26]. Moreover, the lon-
gitudinal evaluation of cfDNA RTL has been recently pro-
posed as a possible non-invasive risk predictive biomarker
for hepatocellular carcinoma in patients with chronic
Hepatitis B virus infection [27]. Considering this background,
the present study aimed to investigate the diagnostic perfor-
mance of RTL measured in serum cfDNA for endometrioid
EC detection and staging.

Materials and Methods

Study Population

The EC group consisted of 40 consecutive patients with a new
endometrioid EC diagnosis. We excluded patients affected by
any other severe cardiovascular, autoimmune, metabolic or
endocrine disease with concurrent pharmacological or non-
pharmacological treatments, as well as smokers.

The patients were enrolled in the Obstetrics and
Gynecology Clinics of the University Hospital of Verona
(Italy). All patients, after diagnosis of endometrioid EC by
endometrial biopsy, underwent standard preoperative evaluat-
ing procedures including gynecologic examination,
transvaginal ultrasound, chest X-Ray, and abdomino pelvic
magnetic resonance imaging and/or computed tomography
[28]. Blood samples were collected before therapeutic proce-
dures (i.e., surgery, chemotherapy or radiotherapy). All the
patients underwent surgical treatment as appropriate.
Histopathological analysis after surgery, that represents the
standard of reference, confirmed a diagnosis of endometrioid

EC in all the patients, and the cancer stage and grade were
defined according to the International Federation of
Gynecology and Obstetrics (FIGO) system criteria [29].

The control group consisted of 31 female healthy controls
(HC), matched by age and body mass index (BMI) with the
EC group. Also for controls, we excluded women affected by
any other severe cardiovascular, autoimmune, metabolic or
endocrine disease with concurrent pharmacological or non-
pharmacological treatments, as well as smokers. All healthy
controls underwent gynecologic evaluation and transvaginal
ultrasound during the previous two years, in order to exclude
any relevant gynecological comorbidity.

Telomere Length qRT-PCR

Circulating serum cfDNA was isolated from 200 μL of serum
using QIAamp DNA Blood Mini kit (Qiagen, Hilden,
Germany), according to the manufacturer’s protocol. The
RTL was assessed using the protocol described by Cawthon,
with minor modification [30]. This method used quantitative
real-time polymerase chain reaction (qRT-PCR) to measure
the ratio between telomere repeat copy number (T) and
single-gene copy number (S) in each sample. Briefly, the
PCRs (2 μL of each DNA) were carried out in using 10 μL
volume and 250 μM of each dNTP (GE Healthcare, Little
Chalfont, UK), 1× HotStart Buffer (Qiagen, Hilden,
Germany), 2.5 mM MgCl2, 1.5 units Hot-Start polymerase
(Qiagen, Hilden, Germany), 2 μM SYTO 9 (Thermo Fisher
Scientific, Waltham, Massachusetts, USA), and 1 × ROX ref-
erence dye (Thermo Fisher Scient i f ic Waltham,
Massachusetts, USA). The primers for telomeres and single-
copy gene 36B4 (encodes acidic ribosomal phosphoprotein
PO) were added to final concentrations of 0.9 μM and
0.3 μM, respectively.

The primer sequences were: TeFo (5’-CGGTTTGT
TTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3′),
TeRe (5’-GGCTTGCCTTACCCTTACCCTTACCC
TTACCCTTACCCT-3 ′), 36B4Fo (5 ′- CAGCAAGT
GGGAAGGTGTAATCC-3′) and 36B4Re (5’-CCCATTCT
ATCATCAACGGGTACAA-3′.)

The enzymewas activated at 95 °C for 10min, followed by
30 cycles of 95 °C for 5 s, 58 °C for 10 s, and 72 °C for 40 s for
the 36B4 reaction, or 20 cycles of 95 °C for 5 s, 54 °C for 45 s,
and 72 °C for 45 s for the telomere reaction. The inter-run
calibration reaction in each qRT-PCR run contained a stan-
dard curve, ranging from 100 ng to 6.25 ng of K562
(Promega, Madison, WI) was included. The T/S ratio was
calculated as 2 − [Ct (telomeres)/Ct (36B4)] = 2 − ΔCt. To as-
sess the relative T/S ratio of the sample, the T/S ratio was
normalized to ΔCt of standard K562. The final formula for
the relative T/S ratio was 2 − (ΔCtSample−ΔCtStandard). The
slope of the standard curve generated for the 36B4 and telo-
mere reaction was −3.45 and − 3.21, respectively.
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Statistical Analysis

Descriptive statistics were reported according to data distribu-
tion as mean ± standard deviation (SD), or median and inter-
quartile range (IQR) for continuous variables; the categorical
variables were reported as absolute number and percentage
(%). Fisher’s exact test, parametric (t-test, ANOVA) and
non-parametric (Mann–Whitney, Kruskal-Wallis) tests were
used to compare baseline characteristics and RTL, as appro-
priate. The RTL values were reported as median and IQR. A
comparison of RTL values between two groups was per-
formed with the Mann-Whitney test. The diagnostic perfor-
mance of cfDNA RTL was estimated using receiver operator
characteristic (ROC) curve analysis. The Yuden’s J statistic
was used in conjunction with ROC analysis to identify the
maximum value of Youden’s J index identifying the optimal
cut-off of cfDNA RTL that maximizes the sensitivity and
specificity. The 95% Confidence intervals (CIs) have been
reported. The statistical analysis was performed using
GraphPad Prism 5.0 (GraphPad Software, San Diego
California USA), and the level of statistical significance was
set at p < 0.05.

Ethics and Methodological Standards

The design, analysis, interpretation of data, drafting and revi-
sions conform the Helsinki Declaration, the Committee on
Pub l i c a t i on E th i c s (COPE) gu ide l i ne s (h t t p : / /
publicationethics.org/), and the STARD (Standards for
Reporting Diagnostic accuracy studies) statements, available
through the EQUATOR (enhancing the quality and
transparency of health research) network (www.equator-
network.org). The study was approved by the independent
Institutional Review Board of the University of Verona.
Each patient enrolled in the study signed informed consent
for all the procedures, to allow blood sample collection and
analysis, data collection and analysis for research purposes.
The study was not advertised, and no remuneration was
offered to the patients to enter or continue the study. An
independent data safety and monitoring committee evaluated
the results.

Results

We did not find significant differences between EC and HC
groups for age (p = 0.51), BMI (p = 0.68), and ethnicity (p =
0.88). Demographics characteristics of the HC group and de-
mographic characteristics and definitive EC stage of the EC
group are reported in Table 1.

The values of cfDNA RTL were found to be lower in the
EC group, with median 1.58 (IQR: 0.89–2.31), than in the HC
group, with median 3.18 (IQR: 2.60–5.13) (p < 0.0001;

Fig. 1). The area under the ROC curve reported a diagnostic
accuracy for EC detection, distinguishing EC patients from
HC, of 0.87 (95% CI: 0.79–0.95, p < 0.0001) (Fig. 2). The
maximal Youden’s J index was 0.61 at the cutoff value of
2.505 (T/S copy ratio) for cfDNA RTL, and the optimal sen-
sitivity and specificity were 80.0% (95% CI: 64.35–90.95)
and 80.65% (95% CI: 62.53–92.55), respectively. When the
analysis of diagnostic performance was limited to EC patients
with I stage EC, the diagnostic accuracywas slightly increased
to 0.89 (95% CI: 0.81–0.97, p < 0.0001) (Fig. 2). No signifi-
cant differences in cfDNA RTL values were found comparing
different EC stages and grades. The EC group was analyzed
comparing lymph node involvement (IIIC1 and IIIC2 stage,
median 1.60 and IQR 0.88–2.78) versus no lymph node in-
volvement (I and II stage, median 1.56 and IQR 0.89–2.31),
and we did not find a significant difference (p = 0.85) (Fig. 3).
Similarly, no statistically significant difference in cfDNA
RTL values was found comparing low grades (1–2, median
1.58 and IQR 0.85–2.34) versus high grade (3, median 1.43
and IQR 0.91–2.42) endometrioid EC (p = 0.89) (Fig. 4).

Discussion

In the area of oncological diagnostics, genetic (i.e. mutations,
polymorphisms) and epigenetic (i.e. microRNAs, DNAmeth-
ylation, histones modifications) biomarkers have been inves-
tigated in cancer patients, with the aim to develop highly sen-
sitive and specific non-invasive biomarker [31].

Table 1 Demographics characteristics of endometrial cancer (EC) and
healthy control (HC) groups, and definitive endometrioid EC stage and
grade in EC group

Variable EC group (n = 40) HC group (n = 31)

Age, years (±SD) 65 (±12) 63 (±13)

BMI, (±SD) 31.3 (±9.18) 30.4 (±8.7)

FIGO stage, n (%)

Ia 19 (47.5)

Ib 10 (25.0)

II 6 (15.0)

IIIa 0

IIIb 0

IIIc1 3 (7.5)

IIIc2 1 (2.5)

IV 1 (2.5)

Histological grade, n (%)

1 9 (22.5)

2 21 (52.5)

3 10 (25.0)

SD = Standard deviation; EC = Endometrial cancer; HC =Healthy con-
trol; BMI = Body mass index
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The analysis of cfDNA recently became of exceptional
interest for the diagnosis of many human disorders, and its
potential clinical utility has been demonstrated for early de-
tection of cardiovascular, autoimmune, and neoplastic dis-
eases, as well as for prenatal screening [32–35]. In patients
affected by malignant diseases, free-nucleic acids released
from neoplastic cells circulate in the bloodstream as tumor-
derived cfDNA, in addition to normal cell-derived cfDNA,
and represent a potential source of cancer genetic material
allowing identification of tumor-associated modifications
[36–39]. CfDNA may provide a noninvasive “liquid biopsy”,
which could give important information about the diagnosis,
possible targets of therapy, and drug resistance mechanisms in
patients with cancers [40].

Various strategies have been investigated with the aim to
use circulating cfDNA as a potential cancer biomarker. The
measurement of absolute cfDNA level reported in cancer pa-
tients was generally higher than healthy controls, but the in-
creased level is reported varying widely, from 0.01% to more
than 90%. The variability of cfDNA levels in cancer patients,
that could be explained by different tumor stage, cellular turn-
over, vascularity, and response to therapy, limits the use of

absolute cfDNA level as cancer biomarker [41]. Another
cfDNA analysis requires information on specific genetic or
epigenetic modifications present in the tumor lesion, making
them unsuitable for monitoring cancer progression. A similar
but alternative cfDNA evaluation uses a panel of frequently
mutated genes in a specific type of cancer; nevertheless, the
detection performance still remains undefined [42–44].
Moreover, further studies investigated and demonstrated a po-
tential link between circulating cell-free mitochondrial DNA
(cfmtDNA) levels and cancers [45, 46].

Differently to some of the techniques described above, TL
estimated by RTL in serum cfDNA proposed byWu et al. [26]
may be considered a possible biomarker for early cancer de-
tection without the need for any prior information. These au-
thors hypothesized that the cfDNA released by tumor cells
and circulating in the bloodstream is characterized by shorter
telomeres and may allow identifying telomeric abnormality
related to breast cancer in the serum of affected patients.
They reported an aberrant reduction of telomere repetitive
sequences in circulating cfDNA of breast cancer patients and
then suggested that cfDNA RTL may be considered a prom-
ising biomarker for early cancer detection. On that basis, they

Fig. 1 Dot plot with box and
whiskers graph showing the
relative telomere length (RTL)
values in patients with endome-
trial cancer (EC) and healthy
controls (HC). The center line
denotes the median value (EC =
1.58; HC = 3.18), the box con-
tains the 25th (EC = 0.89; HC =
2.60) to 75th (EC = 2.31; HC =
5.13) percentiles of dataset. The
black whiskers mark the mini-
mum and maximum values. The
dots show the individual data
points. T = Telomere repeat copy
number; S = Single-gene copy
number

Fig. 2 Receiver operating
characteristics (ROC) curve anal-
ysis using relative telomere length
(RTL) to distinguish total endo-
metrial cancer patients from
healthy controls (A) and stage I
endometrial cancer patients from
healthy controls (B)
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suggested that this biomarker should be investigated in other
types of cancers as a diagnostic tool, if cfDNA RTL shorten-
ing will be confirmed as a constant characteristic of carcino-
genesis processes [26]. To the best of our knowledge, TL
evaluated by RTL in serum cfDNA has never been previously
assessed in patients with EC.

Main Results

We have estimated TL by RTL in serum cfDNA using qRT-
PCR after the extraction of cfDNAwith QIAamp DNABlood
Mini Kit. Our results show that cfDNA RTL was significantly
lower in the EC group compared to the HC group, reporting a
high diagnostic accuracy of 0.87 (95% CI: 0.79–0.95,
p < 0.0001) for endometrioid EC. Therefore, results contribute
to the accumulating evidence suggesting that telomere

shortening, genomic instability, and increased cell death are
present in endometrioid EC. Indeed, susceptibility to DNA
damage and impaired repair function are present in EC, such
as loss of mismatch repair proteins, ARID1A mutation, and
microsatellite instability [47, 48]. Although the physiology
and biology of cfDNA are not completely understood, results
may strengthen the hypothesis that the RTL in cfDNA of the
EC group is due to the presence of cancer-derived cfDNA
with shortened telomeres in the serum of affected patients.
Moreover, although TL is expected to be shortened with the
cancer progression, we found that RTL of cfDNA among
different cancer stages based on lymph node involvement (I-
II vs. IIIC1/IIIC2; p = 0.85) or grades (1–2 vs. 3; p = 0.89) was
not significantly different, and high diagnostic performance
was confirmed by our results even in I stage EC (95% CI:
0.81–0.97, p < 0.0001). This result may strengthen the

Fig. 3 Dot plot with box and
whiskers graph showing the
relative telomere length (RTL)
values in patients with I and II
stage endometrial cancer (EC)
and patients with IIIC1 and IIIC2
stage EC. The center line denotes
the median value (I and II stage =
1.56; IIIC1 and IIIC2 stage =
1.60), the box contains the 25th (I
and II stage = 0.89; IIIC1 and
IIIC2 stage = 0.88) to 75th (I and
II stage = 2.31; IIIC1 and IIIC2
stage = 2.78) percentiles of
dataset. The black whiskers mark
the minimum and maximum
values. The dots show the indi-
vidual data points. T = Telomere
repeat copy number; S = Single-
gene copy number

Fig. 4 Dot plot with box and
whiskers graph showing the
relative telomere length (RTL)
values in patients with grade 1
and 2 endometrial cancer (EC)
and patients with grade 3 endo-
metrial cancer (EC). The center
line denotes the median value
(grade 1 and 2 = 1.58; grade 3 =
1.43), the box contains the 25th
(grade 1 and 2 = 0.85; grade 3 =
0.91) to 75th (grade 1 and 2 =
2.34; grade 3 = 2.42) percentiles
of dataset. The black whiskers
mark theminimum andmaximum
values. The dots show the indi-
vidual data points. T = Telomere
repeat copy number; S = Single-
gene copy number
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hypothesis that the telomere crisis is present even in the early-
stage tumors and stress the potential utility of cfDNA RTL as
a non-invasive biomarker in early-stage EC. On that basis,
RTL in cfDNA may be further investigated as a non-
invasive biomarker that may allow early detection of EC for
all the stages of the disease.

Strength, Limitations and Possible Applications

For the proper interpretation of study results and their possible
applications, different points need to be discussed. Regarding
the limitations of our study, they could be considered the low
number of women included, the use of QIAamp DNA Blood
Mini kit, and some limitations of the techniques used.
QIAamp DNA Blood Mini Kit reported in the healthy group
compared to cancer group a slightly but significantly lower
total yielded cfDNA [26], although this element is
overwhelmed by the fact that absolute cfDNA level was not
investigated in our study. Furthermore, qRT-PCR showed that
the inter-laboratory coefficient of variation can be as high as
20% [49], although similarly to QIAamp DNA Blood Mini
Kit limit RTL is a proportion and may overwhelm the limits of
absolute quantification. Finally, the low number of patients
limits the evaluation of cfDNA RTL differences among EC
stages and grades. This is of paramount importance to evalu-
ate the utility of this tool for prognosis and staging, and further
studies with larger groups are needed to confirm no differ-
ences among cancer grades, stages and particularly lymph
node involvement state.

On the other hand, the strict inclusion and exclusion criteria
represent a strong point of the study and a robust background
for the data analysis we performed. The inclusion/exclusion
criteria were designed to exclude in both groups any other
severe disease, with the aim to avoid any potential known
and unknown confounder able to influence cfDNA level and
TL. Moreover, the EC group and HC group were matched for
age and BMI, since age and BMI influenced both cfDNA
level and TL [50–53]. About confounders, a strong point of
cfDNA RTL measurement is that RTL is a proportion,
allowing to reduce the influence of confounders that may alter
the absolute level of cfDNA and not the TL.

Regardless strength and limitations of our study, further
studies are mandatory to confirm the diagnostic performance,
the clinical utility, the cost-effectiveness, and the potential
target population of this non-invasive biomarker as a diagnos-
tic tool for EC. The influence of age, BMI, other clinical and
demographic factors such as metabolic regulation, diet, hor-
monal balance, and smoke on the cfDNA RTL in EC patients
need further assessment [54–59]. Indeed, reduced TL has been
reported associated to aging [60], cardiovascular diseases
[61], diabetes [62], schizophrenia [63], depression [64], de-
cline cognitive function [65], cancer [66], smoke [67], diet and
BMI [68], and overall mortality [60].

Therefore, although reduced RTL in cfDNA was investi-
gated only in breast cancer [26] and in hepatocellular carcino-
ma for patients with chronic Hepatitis B virus infection [27],
the reduced cfDNA RTL cannot be considered potentially
specific for EC, and factors such as age, BMI, non-
oncologic and oncologic diseases represent possible con-
founders. Indeed, an isolated reduced RTL in cfDNA in the
general population would provide difficult interpretation. On
that basis, cfDNA RTL cannot be used as population screen-
ing for the EC detection but may represent a diagnostic tool
for EC in high-risk patients, such as those with endometrial
hyperplasia and specifically in patients with atypical complex
hyperplasia. In these patients, the ability of cfDNA RTL to
differentiate endometrial hyperplasia from EC may allow bet-
ter tailoring of treatment and follow-up, particularly in young
patients who would benefit from a fertility-sparing approach.
This would be in line with what was already proposed for
hepatocellular carcinoma in patients with chronic Hepatitis
B virus infection [27] and in breast cancer [26], where
cfDNA RTL can be a possible biomarker for the detection
of early-stage disease and allow prompt treatment.

Conclusion

The results of our pilot study suggest that measuring RTL in
circulating serum cfDNA may be a potentially valuable, non-
invasive, simple and relatively inexpensive diagnostic tool for
early detection of EC, whilst its diagnostic performance seems
almost unsatisfactory for detecting cancer progression, grad-
ing and staging. The high performance of cfDNARTL even in
early-stage EC could be useful to allow early and prompt
treatment and avoid the disease progression. Nevertheless,
because reduced cfDNA RTL is not specific for EC and is
influenced by several confounding factors, it cannot be used
as population screening for the EC detection; conversely, it
may represent a potential non-invasive tool for early identifi-
cation of EC in the high-risk population, such as those with
atypical endometrial hyperplasia or genetic predisposition. If
cfDNA RTL will be able to differentiate atypical endometrial
hyperplasia from EC, it may allow better tailoring of treatment
and follow-up. However, larger studies may be necessary to
confirm our preliminary findings and broaden the use of RTL
in clinical practice. Moreover, prospective and longitudinal
investigations will also be necessary to identify and confirm
high-risk patients who may benefit from this tool, considering
that reduced RTL is not specific to EC and its use as popula-
tion screening is not feasible.
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