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Abstract

Immune checkpoint blockade has demonstrated significant anti-tumor immunity in an array of cancer types, yet the underlying
regulatory mechanism of it is still obscure, and many problems remain to be solved. As an inhibitory costimulatory signal of T-
cells, the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway can paralyze T-cells at the tumor
site, enabling the immune escape of tumor cells. Although many antibodies targeting PD-1/PD-L1 have been developed to block
their interaction for the treatment of cancer, the reduced response rate and resistance to the therapies call for further comprehen-
sion of this pathway in the tumor microenvironment. MicroRNAs (miRNAs) and long noncoding RNAs (IncRNAs) are two
main types of noncoding RNAs that play critical parts in the regulation of immune response in tumorigenesis, including the PD-1/
PD-L1 pathway. Here we summarize the most recent studies on the control of this pathway by noncoding RNAs in cancer and
hopefully will offer new insights into immune checkpoint blockade therapies.
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Introduction

The immune system is essential to the maintenance of homeo-
stasis by discriminate “non-self” from “self” through immu-
nological surveillance and elimination of aberrant and carci-
nogenic cells. However, multiple mechanisms have been elu-
cidated to hinder anti-tumor immunity during tumorigenesis,
making the ability to escape from the immune surveillance
one of the hallmarks of cancer [1].

The Nobel Prize in Physiology or Medicine 2018 was
awarded jointly to James P. Allison and Tasuku Honjo for
their discovery and further study of cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4) [2] and programmed cell death
1 (PD-1) [3], both of which are commonly referred to as
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immune checkpoints that function as the brakes of the im-
mune system, and the overexpression of them and the PD-1
ligand, programmed cell death ligand 1 (PD-L1), in tumors or
immune cells is one of the most studied causes that lead to T
cell dysfunction, form immunosuppressive tumor microenvi-
ronment, bring about immune tolerance and eventually enable
immune escape of tumor cells [4].

PD-1/PD-L1 Pathway and Precision Medicine

The PD-1 ¢cDNA was first isolated by Tasuku Honjo [3] in
1992 while B7 Homolog 1 (B7-H1) was identified inde-
pendently by Lieping Chen in 1999 [4, 5] and later known
as PD-L1 to emphasize their ligand-receptor relationship
[6]. PD-1 is a type I transmembrane glycoprotein
consisting of an immunoglobulin V (IgV)-type extracellu-
lar domain, a transmembrane region, and an intracellular
tail and mainly expressed on the surface of T-cells, B-cells
and natural killer (NK) cells [7]. PD-L2 (B7-DC) is the
other ligand of it besides PD-L1, which is also a member
of the B7 family of transmembrane proteins [§].

To be fully activated, T cells must receive two sets of
signals from antigen-presenting cells (APCs): the recogni-
tion of T cell receptor (TCR) mediated antigen-specific
signal of complexes of major histocompatibility complex
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(MHC) with the antigen on the surface of APCs or tumor
cells, and a second costimulatory signal mediated by inter-
action of CD28 on the T-cells with CD80 (B7-1) or CD86
(B7-2) on APCs [9]. While the interaction of CD28 with
B7-1/B7-2 can activate T-cells, the engagement of PD-1
by PD-L1 and PD-L2 can efficiently paralyze T-cells by
inhibiting T lymphocytes glucose consumption, prolifera-
tion, survival and cytokine production, leading to their
malfunction and apoptosis [4, 10], which usually acts as
a basic pattern to avoid host autoimmunity [11, 12].

PD-L1 is expressed on the surface of many cell types in-
cluding T-cells, B-cells, APCs, epithelial cells and monocytes,
and rapidly upregulated in response to proinflammatory cyto-
kines like interferon-gamma (IFN-y) and tumor necrosis
factor-o« (TNF-«) secreted by tumors [13] while the expres-
sion of PD-L2 is mainly restricted to APCs [8]. Also, unlike
PD-L2, PD-L1 is a binding partner for B7—1 and competitive-
ly binds B7—1 with stronger affinity than CD28, thus imped-
ing the activation of T-cells by B7—1/CD28 pathway [14]. As
a result, the anti-tumor effect of PD-L2 is limited, and re-
searchers attach much more importance to PD-L1 study.

Clinically, the PD-1/PD-L1 blockade has demonstrated
notable anti-tumor immunity in various tumor types in-
cluding melanoma [15, 16], non-small cell lung cancer
(NSCLC) [17, 18], gastric cancer [19-21], colorectal can-
cer (CRC) [22, 23], renal cell carcinoma (RCC) [24], pan-
creatic cancer [25], breast cancer [26, 27], ovarian cancer
[28, 29], bladder carcinoma [30] and Hodgkin’s lympho-
ma [25]. In 2015, a miracle in cancer treatment history
that the PD-1 inhibitor pembrolizumab (Keytruda®) [31]
cured the 91-year-old American former president Jimmy
Carter of metastatic melanoma (MM) ignited the enthusi-
asm of immune checkpoint blockade therapy investigators
all over the world, as a result of which the precision med-
icine has become more and more popular.

The concept of precision medicine is based on the funda-
mental hypothesis that some specific molecular variations can
be regarded as pathogeny of a given malignancy and identify-
ing it will lead to therapeutics that are more discriminating and
personized than traditional cancer treatment approaches such
as chemotherapeutics and radiotherapeutics. As mentioned
above, CTLA-4 and PD-1/PD-L1 are widely studied for their
function as brakes of the immune system, especially the anti-
tumor immunity. As a result, investigations on checkpoint
blockade are in the ascendant and multiple anti-CTLA-4 and
anti-PD-1/PD-L1 antibodies have been developed and clini-
cally analyzed for the treatment of all kinds of malignant tu-
mors, showing promising outcomes [25, 32].

The use of immune checkpoint antibodies in treating solid
tumors was first established in 2010 when a CTLA-4 inhibi-
tor, ipilimumab, showed to prolong patients’ survival in MM
and later approved by the US Food and Drug Administration
(FDA) for the treatment of melanoma [33]. On December 22,
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2014, the nivolumab of Bristol-Myers Squibb (BMS) became
the first FDA approved PD-1 antibody for the treatment of
melanoma, and the pembrolizumab mentioned above was ap-
proved on September 4, 2014 for treating MM [34].

NSCLC, accounting for 85% of all lung cancer diagnoses
[35], has been a significant concern where numerous check-
point blockade researches take place besides melanoma. As
most of NSCLC patients are diagnosed at an advanced stage
when the tumor is no longer operable, and chemoradiotherapy
is not competent enough, more efficient therapies are incred-
ibly urgent to develop [17, 36, 37]. It was not until
March 2015 when FDA approved nivolumab for squamous
NSCLC treatment, and eventually for all patients with ad-
vanced NSCLC progressing after platinum-based chemother-
apy on October 9, 2015. Pembrolizumab was also approved
on October 2, 2015 for PD-L1-positive NSCLC treatment. So
far, both nivolumab and pembrolizumab have been approved
by FDA and used for treatment in melanoma, NSCLC, head
and neck cancer, RCC and Hodgkin lymphoma with more and
more new drugs under clinical trials both domestically and
abroad [38—43]. The latest PD-1/PD-L1 related drugs that
are launched in the market or currently under clinical trials
are listed below (Table 1).

Notwithstanding all the promising results achieved in
checkpoint immunotherapies, failure of response to the
PD-1/PD-L1 checkpoint blockade therapies makes them
inefficacious, and the drug resistance also makes the treat-
ment tougher [44]. The molecular mechanisms making
tumors sensitive or not to the PD-1/PD-L1 blockade ther-
apies and under which this pathway is regulated are barely
understood. Therefore, further understanding of the under-
lying regulatory mechanisms of the PD-1/PD-L1 pathway
is of noteworthy significance and may provide the basis
for the development of more practical and effective
targeted anti-cancer therapies.

PD-1/PD-L1 Pathway and Noncoding RNAs

PD-1 is absent on resting T-cells and found initially only in
activated mouse T-cells upon TCR engagement [45], yet its
expression is commonly upregulated in patients with various
cancer types and usually implies a poor prognosis [46—49].
Likewise, PD-L1 mRNA can be found broadly in various
tissues under normal physiological conditions while its pro-
tein is only expressed in specific tissue types such as placenta,
tonsil and a small proportion of macrophage-like cells in lung
and liver [4], suggesting that the expression of PD-1 and PD-
L1 is regulated post-transcriptionally, which is typically me-
diated by noncoding RNAs.

Noncoding RNAs refer to RNAs that have no protein-
coding ability, and the most studied types are microRNAs
(miRNAs) with a length of about 22 nucleotides and long
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Table 1 The latest PD-1/PD-L1-related drugs that are launched in the market or under clinical trials

Target Name (Code)  Corporation Clinical Indications Status
PD-1  Nivolumab Bristol-Myers Unresectable melanoma (2014); Squamous and non-squamous Launched-2014
Squibb/ Ono NSCLC, advanced RCC (2015); Hodgkin’s lymphoma,

RCC, recurrent or metastatic head and neck cancer (2016);
Unresectable or metastatic UC, HCC, metastatic CRC (2017)
Pembrolizumab Merck Unresectable or metastatic melanoma (2014); NSCLC (2015); Launched-2014
Squamous head and neck cancer, metastatic NSCLC (2016);
CRC, Hodgkin’s lymphoma, Gastric Cancer (2017)

Cemiplimab Sanofi/Regeneron Metastatic CSCC; NSCLC; Cervical cancer Pre-Registered
Tislelizumab BeiGene Unresectable HCC Phase 3
REGN2810 Regeneron Pharmaceuticals NSCLC Phase 3
Niraparib ARCAGY/ GINECO GROUP Ovarian Cancer; Endometrial Cancer Phase 2/Phase 3
Camrelizumab  Jiangsu Hengrui Non-squamous NSCLC and squamous esophageal Cancer Phase 2
IBI-308 Innovent Biologics NSCLC Phase 2
Spartalizumab ~ Novartis Advanced melanoma Phase 2
MGA-012 Incyte/ MacroGenics Metastatic CRC; metastatic Merkel cell Cancer Phase 2
AGEN-2034 Agenus Cervical Cancer Phase 2
Sym-021 Symphogen Solid tumors; lymphomas Phase 2
LZM-009 Livzon Solid tumors Phase 2
BI-754091 Boehringer Solid tumors Phase 2
Ingelheim
XmAb-20,717 Xencor Solid tumors Phase 2
MGD-013 MacroGenics Solid tumors; hematologic neoplasms Phase 2
TSR-042 Tesaro/ AnaptysBio Solid tumors Phase 2
AMP-224 GlaxoSmithKline/ MedImmune CRC Phase 2
Atezolizumab  Oslo University Hospital NSCLC Phase 2
SHR-1210 Shanghai Zhongshan Hospital Gastric Cancer Phase 2
CV301 Bavarian Nordic Bladder Cancer Phase 2
eFT508 Effector Therapeutics Solid Tumors Phase 2
JNJ-63723283  Janssen Research & Development, LLC Multiple Myeloma; Castration-Resistant Prostatic Phase 1/ Phase 2
Neoplasms; UC
TTI-622 Trillium Therapeutics Inc. Lymphoma; Myeloma Phase 1
HLX10 Henlix, Inc Solid Tumor Phase 1
PF-06801591  Pfizer Solid tumors; lymphomas; Prostatic Cancer; Melanoma; Phase 1
Ovarian Cancer; Sarcoma; Hodgkin lymphoma

PD-L1 Atezolizumab  Roche Locally advanced or metastatic UC and NSCLC Launched-2016
Durvalumab AstraZeneca Locally advanced or metastatic UC (2017) and NSCLC (2018) Launched-2017
Avelumab Merck/ Pfizer Metastatic Merkel cell Launched-2017

Cancer and locally
advanced or metastatic UC

M-7824 Merck Advanced solid tumors Phase 2
CX-072 CytomX Therapeutics Solid tumors, lymphomas Phase 2
MSB-2311 MabSpace Biosciences Solid tumors Phase 2
FS-118 F-star/ Merck Advanced cancer Phase 2
FAZ-053 Novartis Advanced cancer Phase 2
KN-035 Suzhou Alphamab Solid tumors Phase 2
LY-3300054 Lilly Solid tumors Phase 1

noncoding RNAs (IncRNAs) which are longer than 200 nu-  to the mRNA 3'-untranslated region (3'UTR) of target genes,
cleotides [50, 51]. causing mRNA degradation or repression of translation [52].

miRNAs are a class of small single-stranded RNAs that  Currently, it is well-known that miRNAs can be aberrantly
post-transcriptionally modulate gene expression by binding  expressed in various human cancers [53, 54], as a result of
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which the majority of studies on miRNAs have focused on
their function as oncogenes or tumor suppressors [55-59].

LncRNAs are recognized to play vital roles in the regula-
tion of numerous biological processes such as cell prolifera-
tion, RNA splicing, gene expression, and apoptosis, which are
altered during cancer development and progression [51]. Due
to their highly cell-specific and time-dependent expression
patterns, IncRNAs are mainly studied as cellular address code
and gene expression modulators, which are often realized by
interaction with other noncoding RNAs [60-63].

Emerging evidence has revealed the pervasive involve-
ment of noncoding RNAs in the regulation of the host
immune response, especially in the tumor microenviron-
ment [64—71]. Here we summarize the most recent studies
on the regulation of the PD-1/PD-L1 pathway by noncod-
ing RNAs in cancer and aim to contribute to further un-
derstanding of the immune checkpoint blockade and pre-
cision medicine in cancer immunotherapies.

Regulation of the PD-1/PD-L1 Pathway
by Noncoding RNAs in Cancer

Regulation of PD-1/PD-L1 by miRNAs

miRNAs exert their functions mostly by interaction with
the 3'UTR of their target genes’ mRNA, which has been a
consensus in miRNA study [72]. Elevated PD-L1 expres-
sion caused by structural variations disrupting its mRNA
3'UTR uncovered a novel genetic mechanism of immune
escape in multiple cancers [73]. Likewise, variant single
nucleotide polymorphisms (SNPs) at the binding sites of
miRNAs in the PD-L1 3'UTR obstructed the interaction
between miRNAs and PD-L1 mRNA, leading to increased
risk of cancers [74]. For example, a guanine-to-cytosine
mutation at the 3'UTR of PD-L1 mRNA which was fur-
ther confirmed to locate at the “seed region” of the bind-
ing sites of miR-570 was frequently observed in gastroin-
testinal cancers, as a result of which the interaction be-
tween miR-570 and PD-L1 mRNA was hindered, conse-
quently leading to the overexpression of PD-L1 [75].

Meanwhile, PD-L1 expression was induced by IFN-y and
Cryptosporidium parvum in Cholangiocytes through the
downregulation of miR-513 [76, 77] while suppressed by
miR-155 induction via TNF-x and IFN-y in primary human
cells [78, 79]. A miRNA cluster, the miR-25-93-106b cluster,
was also demonstrated to regulate bone marrow metastasis
and immune invasion via modulation of PD-L1 in bone mar-
row (BM) stromal niche [80].

As previously mentioned, most of the studies on noncoding
RNAs are focused on the roles they played during the tumor-
igenesis and development. As NSCLC, melanoma and gastro-
intestinal cancers are the primary causes of cancer-related
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deaths worldwide [35], they have undoubtedly drawn much
attention. Hereunder, we will mainly discuss the study prog-
ress of the PD-1/PD-L1 pathway regulation mechanisms by
noncoding RNAs in NSCLC, melanoma, gastrointestinal can-
cers, and many other cancers.

NSCLC

The role of miRNAs in NSCLC carcinogenesis was indicated
as early as in 2004 since the relatively low expression of
several miRNAs was demonstrated in lung cancer cell lines
[81, 82]. The number of functional studies focusing on the
miRNAs’ role in NSCLC has increased and several indepen-
dent researches revealed the pro- or anti-cancer functions of
miRNAs including miR-150 [83], miR-34a [84, 85], miR-
486-5p [86-89], miR-18a [90, 91] and miR-146a [92, 93].

The emergence of numerous predictive bioinformatics
tools has offered us unprecedented opportunities and conve-
nience for noncoding RNA function prediction and analysis.
miR-140-3p, for example, is predicted to have the potential to
bind to the 3'UTR of PD-L1 mRNA in many cancers [94],
which was further verified in osteosarcoma [95] and NSCLC
[96]. Similarly, the high expression of miR-33a was found to
be associated with low PD-1 expression and more prolonged
survival of patients in lung adenocarcinoma exploiting The
Cancer Genome Atlas (TCGA) database and further con-
firmed with patients’ tissue samples [97].

miRNAs that share the same seed alignment and consen-
sus secondary structures are considered to belong to a
miRNA family [98], and the family members are often
found to work synergistically to maximize their function
in the biological processes [99]. The miR-34 family has
been reported to be a suppressor in various cancer types
by targeting the Notch, c-Myc, c-Met, Bcl-2, Src, and p53
[100]. miR-34a especially has shown clinical significance
in the treatment of MM [101] and NSCLC [85]. p53 is one
of the most commonly mutated genes in cancers and crucial
in regulating apoptosis, cell division, DNA damage and re-
pair, senescence, and modulating the immune response
[102]. A p53/miR-34/PD-L1 axis was demonstrated in
NSCLC, where p53 regulated PD-L1 via the miR-34 family.

Moreover, in vivo administration of MRX34 (a liposomal
formulation complexed with miR-34a mimic) alone or in
combination with radiotherapy could reduce PD-L1 expres-
sion in the tumor and liberate T cell from exhaustion, showing
a promising anti-tumor potential of miRNAs [103].

miR-200 family is another well studied miRNA family in
various malignancies, including acute myeloid leukemia
(AML), ovarian cancer, colorectal cancer, and lung cancer
[104-106]. The miR-200/ZEB1 (zinc-finger E-box-binding
homeobox 1) axis has been reported to regulate tumor metas-
tasis through epithelial-to-mesenchymal transition (EMT)
progress, and PD-L1 was found to be under the regulation of
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this miR-200/ZEB1 axis in NSCLC, which subsequently led
to debility of CD8" T-cells in the tumor microenvironment,
connecting the CD8" tumor-infiltrating lymphocytes (TILs)
exhaustion with EMT and revealing the significance of
immune-suppression to tumor metastasis [107].

Besides directly binding with the 3'UTR of PD-1/PD-
L1 mRNA, miRNAs are also found to exert their regula-
tion on PD-1/PD-L1 through their upstream and down-
stream pathways.

As drug resistance and chemoresistance are the main ob-
stacles affecting the treatment of NSCLC, it seems essential
to focus on reversing the resistant state of tumors to sensi-
tive ones. In chemoresistant NSCLC, a miR-197/cyclin-de-
pendent kinases regulatory subunit 1 B (CKS1B)/ signal
transducers and activators of transcription 3 (STAT3)-medi-
ated PD-L1 network was revealed in which the downregu-
lation of miR-197 was associated with chemoresistance and
worse overall survival [108]. PD-L1 was regulated by
STAT3, which was a pivotal target downstream of the
miR-197/CKS1B pathway and proved to have the potential
of relieving lung cancer drug resistance and tumor progres-
sion. On the contrary, miR-3127-5p was found to promote
STAT3 phosphorylation and subsequently induced the ex-
pression of PD-L1 in NSCLC and eventually resulted in
immune escape and chemoresistance [109].

Melanoma

The promising results achieved by anti-PD-1/PD-L1 therapies
have inspired more and more studies in checkpoint blockade
in melanoma treatment as the low 5-year survival rate and
inadequate response to traditional chemotherapies are two
main obstacles facing the treatment of melanoma.

PD-L1 expression was upregulated in tissue biopsies after
resistance to BRAF or mitogen-activated extracellular signal-
regulated kinase (MEK) inhibitors (BRAFi or MEKi) treat-
ment arose in a cohort of 80 MM patients, consequently lead-
ing to increased invasiveness and worse prognosis. Plasmatic
miR-17-5p levels showed to be inversely correlated with that
of PD-L1, which was further verified to be post-
transcriptionally regulated by miR-17-5p. Together, these re-
sults revealed that miR-17-5p might be used as inverse indi-
cators of PD-L1 levels by the tumor, along with PD-L1 a
marker for the aggressiveness of melanoma and a predictor
of response to BRAFi or MEKi treatment [110].

miR-28, likewise, through silencing of PD-1, restored
the impaired secretion of cytokines interleukin 2 (IL-2)
and TNF-« by liberating the exhausted T-cells in melano-
ma in vivo, thus providing a novel target in melanoma
immunotherapies [111].

Tumor-associated macrophages (TAMs) are the dominant
and most abundant leukocytic infiltrate in many tumor types
that participate in tumor angiogenesis, invasion, metastasis

and almost every process during tumor progression. It is com-
monly acknowledged that TAMs have two dominant distinc-
tive phenotypes: the immunosuppressive, tumor-promoting
M2 macrophage and pro-inflammatory and tumoricidal M1
macrophage [112—114].

MiRNAs have long been studied for their regulation of host
immuno-inflammatory responses [115]. miR-21 and miR-4717
are among the first ones found to modulate host immune re-
sponse through regulation of PD-1 in virus-induced inflamma-
tion and liver diseases [116, 117]. As one of the first identified
miRNAs, miR-21 has been reported to be a key regulator of
oncogenesis in gastric [118—121], renal [122, 123], esophageal
[124-126], colon [127-129], lung [130-132], prostate
[133—-135], breast cancer [136, 137] and melanoma [138]. By
downregulating Janus kinase 2 (JAK?2) and signal transducers
and activators of transcription 1 (STAT1), miR-21 inhibited the
IFN-y-induced STAT1 signaling pathway, which is required
for macrophage M1 polarization. miR-21 depletion was thus
confirmed to facilitate tumoricidal inclination through partici-
pating in the STAT1-mediated activation of anti-tumor immu-
nity and improved PD-1 immunotherapy [6, 139, 140], which
was verified in vivo in melanoma xenografts.

Gastrointestinal Cancers

Gastric cancer and colorectal cancer (CRC) are the two main
types of gastrointestinal cancers, which are among the most prev-
alent cancers in the general population [141]. While Helicobacter
pylori (H. pylori) infection is the most common cause of gastric
cancer, a novel mechanism was revealed through which H. pylori
promotes gastric cancer development by upregulating PD-L1
expression via inhibition of the miR-200b and miR-152 expres-
sion, causing immune escape [142]. PD-L1 was further verified
to be a target gene of miR-152, and overexpression of the latter
could increase immune response via PD-L1 inhibition [143].

In CRC, miR-138-5p expression was downregulated in tis-
sue samples and inversely connected with advanced cancer
stage, lymph node metastasis, and overall survival. Moreover,
miR-138-5p could bind to PD-L1 mRNA 3'UTR, leading to
CRC cell growth suppression in vitro and tumorigenesis inhi-
bition in vivo [144]. Also, in advanced CRC, a PTEN (phos-
phatase and tensin homolog)-inhibition-induced PD-L1 upreg-
ulation was mediated by miR-20b, 21 and -130b, where the PD-
L1 overexpression was induced by the inhibition of PTEN, as
has been reported before [145], and PTEN silencing was regu-
lated by overexpression of miR-20b, 21 and -130b [146].

Other Cancers
Targeted therapies are showing extraordinary effectiveness in
treating all kinds of cancers in this era of precision medicine.

As a result, studies on immune checkpoint blockade are also
carried out in various malignant tumors.
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Acute myeloid leukemia (AML) is a fatal hematological
malignancy that features a highly immunosuppressive mi-
croenvironment [ 147]. As the incidence rate of the disease is
rapidly growing through the decades, a more profound un-
derstanding of its genetic underpinnings is urgent. miR-34a
was verified to regulate PD-L1 through interaction with its
3'UTR and could further reduce the PD-L1-induced IL-10
production, sensitizing the PD-L1-overexpressing tumor
cells to T cell killing in AML [148]. miR-200c and miR-
34a were also identified as crucial regulators of PD-L1 in
AML, which is mediated by the heterodimeric oncoprotein
MUCI, which could regulate the processing of miRNA.
Herein the silencing of MUCI1 caused a marked increase
in mature miR-200c and miR-34a levels, and a decrease in
PD-L1 protein level consequentially [149].

In epithelial ovarian carcinoma (EOC), one leading cause
of death in women with gynecological malignancies, miR-424
activated cytotoxic T lymphocytes (CTLs), reduced regulato-
ry cytokine secretions and eventually reversed
chemoresistance by downregulating PD-L1 and CD80, as
the immune checkpoint was blocked and T cell immune re-
sponse activated [150]. As a matter of fact, miR-424 belongs
to the miR-15/-16/—195/-424/-497/=503 family, whose an-
other two members, miR-16 and miR-195, were also found to
be able to enhance radiotherapy in prostate cancer by targeting
PD-L1, which subsequently activated T-cells through prolif-
eration of cytotoxic CD8" T-cells and inhibition restraint of
myeloid-derived suppressor cells (MDSCs) and regulatory T-
cells (Tregs) [151].

miR-374b [152], miR-375 [153], miR-138 [154], miR-
142-5p [155], miR-574-3p [156], miR-195 [157] and miR-
873 [158] were also demonstrated to regulate the PD-1/PD-
L1 pathway and cancer immune response in liver cancer, head
and neck squamous cell carcinoma (HNSCC), glioma, pan-
creatic cancer, spinal chordoma, diffuse large B cell lympho-
ma (DLBCL) and breast cancer respectively (Table 2).

Regulation of PD-1/PD-L1 by Other Noncoding RNAs

Besides the miRNAs, other types of noncoding RNAs
were also found to be involved in PD-1/PD-L1 pathway
regulation in cancers.

Actin filament-associated protein one antisense RNA 1
(AFAP1-ASI1), for example, was found to be co-expressed
with PD-1 in nasopharyngeal carcinoma (NPC) [159].
Also, the high expression of AFAP1-AS1 and PD-1 was
strongly associated with distant metastasis and poor prog-
nosis, revealing a novel marker and candidate target for
clinical trials. Another IncRNA, small nucleolar RNA
host gene 20 (SNHG20), has been demonstrated recently
to promote cell growth and metastasis in esophageal squa-
mous cell carcinoma (ESCC) via modulating ATM (ataxia
telangiectasia—mutated kinase)-JAK-PD-L1 pathway
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[161]. The noncoding RNAs that regulate the PD-1/PD-
L1 pathway indirectly are shown in Table 3.

HY4, a member of a newly discovered ncRNA category, Y
RNA, is found to be enriched in chronic lymphocytic leuke-
mia (CLL)-derived exosomes. Uptake of hY4 triggered PD-
L1 upregulation and cytokine secretion in monocytes, which
was further verified to be mediated via Toll-like receptor 7
(TLR7) signaling [160]. Since circulatory noncoding RNAs
are mainly transported to the plasma in exosomes to avoid
degradation by nuclease, exosomes are widely studied in order
to search for novel biomarkers and targets in cancer diagnoses
and treatment. This work uncovered a new kind of noncoding
RNA participating in cancer immune response regulation and
provided new insights into the cancer diagnoses and treatment
[162]. The potential role of noncoding RNAs in PD-1/PD-L1
pathway regulation is shown in Fig. 1.

Conclusion and Perspective

As personalized cancer therapies are becoming more and
more popular around the world, antibodies targeting dif-
ferent genes in various cancer types are studied and de-
veloped, of which the anti-PD-1/PD-L1 antibodies are
doubtlessly the most high-profile and successful ones,
with several of each kind approved by FDA for treatment
of many cancer types [162, 163].

As PD-L1 is often induced by cytokines secreted by cancer
cells like TNF-x and IFN-y to evade the attack by activated T-
cells via the interaction between PD-1 and PD-L1, the PD-1/
PD-L1 checkpoints blockade therapies regulate the immune
response at the tumor sites and fix ongoing immune processes
unlike previous immune therapeutic agents that boost system-
ic immune responses against cancer in the first place. In other
words, blockade of the PD-1/PD-L1 interaction can not only
ameliorate the host immune response by activating the mac-
rophages or promoting the secretion of anti-tumor cytokines,
it can also remove the exhausted T-cells at the tumor sites, thus
promoting the proliferation of the T cells and stimulate them to
kill the cancer cells, which makes the anti-PD-1/PD-L1 ther-
apies unique and far more effective and powerful than tradi-
tional immune therapeutic agents.

Meanwhile, apart from liberating T cells from exhaus-
tion phenotype, PD-1/PD-L1 blockade has also demon-
strated a significant impact on reversing the resistance of
patients to traditional cancer treatments including chemo-
therapy and radiotherapy [103, 108-110, 150, 151]. Here
we can see that once the PD-1/PD-L1 pathway is blocked
by miRNA-mediated PD-L1 silencing, the T-cell immune
response will be activated and thus reversing the resis-
tance to traditional chemotherapies or radiotherapies or
enhancing the efficacy of the therapies. On the contrary,
the miRNA-mediated PD-L1 upregulation will often lead
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Table2 Noncoding RNAs regulating PD-1/PD-L1 pathway directly and their functions in cancer
Target Noncoding Host Expression Function Reference
RNA
PD-1 miR-4717 HBV-associated liver diseases ~ Up-regulated Increase the production of TNF-o and IFN-y, affects the [117]
susceptibility and disease
course of chronic HBV infection
miR-21 HSV-Induced Inflammation; Up-regulated miR-21 depletion promotes tumoricidal polarization and ~ [116, 138,
Melanoma enhances PD-1 immunotherapy 140]
miR-155 Experimental autoimmune Down-regulated / [79]
encephalomyelitis
miR-33a Lung adenocarcinoma Up-regulated miR-33a high levels were associated with low PD-1 [97]
expression and
longer survival of patients
miR-28 Melanoma Up-regulated Convert the exhaustive status of T cells [111]
miR-138 Glioma Up-regulated In vivo miR-138 treatment demonstrated marked tumor ~ [154]
regression and an associated
decrease in PD-1 expression
miR-374b Liver cancer Down-regulated Enhance the tumor-targeting capacity of cytokine-induced [152]
killer cells, inhibit liver
cancer progression
AFAP1-AS1 NPC Up-regulated Promote the formation and development of NPC, predict  [159]
poor prognosis in NPC
PD-L1 miR-513 Cholangiocytes Down-regulated Reduce IFN-y-stimulated B7-H1 expression and [76, 77]
consequently influence
B7-H1-associated apoptosis in cocultured T cells
miR-155 Human primary cells Up-regulated / [78]
miR-25-93-106b BM stromal niche Up-regulated Inhibit recruitment and invasion of bone marrow cells [80]
miR-140 NSCLC; Osteosarcoma Down-regulated Inhibit cell proliferation and cell cycle; suppress [94-96]
osteosarcoma tumor growth
miR-34 NSCLC; AML Down-regulated Increase tumor-infiltrating CD8+ cells and reduce the [103, 148]
PD-1+ T-cells and macrophages;
inhibit tumor growth
miR-200 NSCLC; Gastric cancer; AML  Down-regulated Determine the abundance and function of CD8+ TILs and [107, 142]
tumor metastatic potential
miR-17-5p Melanoma Down-regulated miR-17-5p levels in MM patients inversely correlate with  [110]
PD-L1 expression and may
predict sensitivity to BRAFi
miR-152 Gastric cancer Down-regulated Improve T cells proliferation and function [142, 143]
miR-570 Gastric cancer Up-regulated / [75]
miR-138-5p CRC Down-regulated Suppress CRC cell growth in vitro and inhibit [144, 154]
tumorigenesis in vivo
miR-142-5p Pancreatic cancer Down-regulated Inhibit mice pancreatic cancer growth and enhance [155, 164]
anti-tumor immunity
miR-195 DLBCL; Prostate Cancer Down-regulated Promote IFN-y and TNF-« levels and decrease IL-10 and [151, 157]
the ratio of PD-1+ T cells;
Enhance radiotherapy via T cell activation in the tumor
microenvironment
miR-574-3p Spinal chordoma Down-regulated / [156]
miR-375 HNSCC Down-regulated Increase T cell responses [153]
miR-424 Epithelial ovarian carcinoma Down-regulated Reverse chemoresistance by T cell immune response [150]
activation in vitro and in vivo
miR-16 Prostate Cancer Down-regulated Enhance radiotherapy via T cell activation in the tumor [151]
microenvironment
hY4 CLL Down-regulated Induce cytokine secretion and immunosuppressive [160]

molecules in monocytes

to resistance [109] (Table 4). In a sense, miRNAs can
function analogously with PD-1/PD-L1 antibodies in

cancer treatment to achieve a better outcome, which im-
plies better exploitation of miRNAs in clinical trials.
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Table 3 Noncoding RNAs

regulating PD-1/PD-L1 pathway Target  Noncoding RNA  Host Expression Direct Function Reference
indirectly and their functions in Target
cancer
PD-LI miR-197 NSCLC  Down-regulated CKSIB  Promote pulmonary [108]
metastasis and lead
to chemoresistance
miR-3127-5p NSCLC  Down-regulated STAT3  Upregulate PD-L1 [109]
inducing
chemoresistance
miR-20b-21-130b  CRC Up-regulated PTEN / [146]
SNHG20 ESCC Up-regulated ATM Promote growth and [161]

metastasis

Despite the success that anti-PD-1/PD-L1 antibodies
achieved in clinical, there are still much unknown about
the PD-1/PD-L1 pathway and the associated immune re-
sponses including the regulation of their expression in
different tissues and tumor types, the mechanism of resis-
tance to the blockade therapies and the pathways related
in their functions on tumor immunity. At this moment
through the work of the regulation of the PD-1/PD-L1
pathway by noncoding RNAs, we can take a glance at
the mechanism underlying the expression pattern of the
PD-1/PD-L1 pathway in the tumor microenvironment.

Although the function of IncRNAs in different biological
activities have been studied comprehensively and understand-
ing of them have been thriving, apparently there are still much
unknown about their roles in immune checkpoint regulation.
The studies focusing on the regulation of the PD-1/PD-L1

Fig. 1 Noncoding RNAs that are
involved in regulation of the PD-
1/PD-L1 pathway in cancer. The
PD-1 is expressed on the surface
of T cells, while PD-L1 is usually
elevated in tumor cells in
response to cytokines secreted by
tumors. The PD-1/PD-L1
pathway are under regulation of
many noncoding RNAs post-
transcriptionally directly or
indirectly, most of which are
miRNAs. The use of PD-1/PD-L1
antibodies can specifically bind
with PD-1 or PD-L1 and block
the pathway, after which the T-
cells will be activated again to kill
the tumor cells

MHC with
Antigen

miR-4717
miR-21
miR-155
miR-33a

miR28 ——] WewesRsRY

miR-138 PD-1 mRNA
miR-374b /
AFAP-AS1

@ Springer

pathway by noncoding RNAs mostly revealed microRNA-
mediated mechanisms, leaving much work for investigation
of other unrevealed noncoding RNAs, especially IncRNAs. It
must be admitted that there is still a long way ahead of us to
achieve a full understanding of this pathway and the role it
plays in the tumor immunology. Much more work is needed to
reveal the complete picture of these critical immune check-
points, which will facilitate the discovery and design of novel
clinically applicable approaches in cancer immunotherapies.
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Table 4 miRNAs involved in
regulating resistance to Noncoding Host Treatment Effect Reference
chemotherapy and radiotherapy RNA
miR-197 NSCLC Platinum-based Overexpression of miR-197 sensitized the ~ [108]
chemotherapy drug response of
Cis-diaminodichloroplatin (CDDP) and
paclitaxel (TXL) in vitro
miR-3127-5p NSCLC Cisplatin Upregulate PD-L1 expression, leading to [109]
chemotherapy chemoresistance
miR-17-5p Melanoma  BRAF or MEK Downregulated miR-17-5p in melanoma [110]
inhibitors caused PD-L1
(BRAFi or up-regulation, leading to resistance to
MEKi) treatment BRAFi or MEKi
miR-424 EOC Cisplatin miR-424 reversed chemoresistance by [150]
chemotherapy silencing PD-L1 and
T cell activation
miR-34 NSCLC Radiotherapy MRX34 delivery enhanced efficacy of [103]
radiotherapy
miR-195-16 Prostate Radiotherapy Restoration of miR-195 and miR-16 [151]
cancer expression enhanced
radiotherapy via T cell activation in the
tumor microenvironment
by blocking PD-L1 expression.
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