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Abstract
Muscle-invasive bladder urothelial carcinoma (MIBC) is characterized as a genetic heterogeneous cancer with a high
percentage of recurrence and worse prognosis. Identify the prognostic potentials of novel genes for muscle-invasive
urothelial bladder cancer could at least provide important information for early detection and clinical treatment.
Weighted gene co-expression network analysis (WGCNA) algorithm, a powerful systems biology approach, was
utilized to extract co-expressed gene networks from mRNA expression dataset to construct transcriptional modules
in MIBC samples, which was associated with demographic and clinical traits of MIBC patients. The potential prog-
nostic markers of MIBC were screened out in the discovery dataset and verified in an independent external validation
dataset. A total of 8 co-expression modules were detected through the WGCNA algorithm in the discovery datasets
based on 401 MIBC samples. One transcriptional module enriched in cell development was observed to be correlated
with the MIBC prognosis in the discovery datasets (HR = 1.48, 95%CI = 1.04–2.11) and independently verified in an
external dataset (HR = 3.59, 95%CI = 1.09–11.79). High expression of hub genes including discoidin domain receptor
tyrosine kinase 2 (DDR2), PDZ and LIM domain 3 (PDLIM3), zinc finger protein 521 (ZNF521), methionine sulf-
oxide reductase B3 (MSRB3) were significantly associated with the unfavorable survival of MIBC patients. We
identified and validated four novel potential biomarkers associated with prognosis of MIBC patients by constructing
genes co-expression networks. The discovery of these genetic markers may provide a new target for the development
of MIBC chemotherapeutic drugs.
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Introduction

Bladder cancer is a highly heterogeneous cancer of the
urinary system, 90% of which is diagnosed as epithelial
bladder cancer. On average, 430,000 incident bladder car-
cinoma cases and 165,000 deaths are reported approxi-
mately each year worldwide [1]. Among them, about 1 in
3 are first diagnosed as or later progress to muscle-invasive
bladder carcinoma if not detected early or treated properly
by underlying major changes at the molecular and genetic
level [2]. Pathological grade of MIBC is reported to be
usually high, and epithelial–mesenchymal transition
(EMT) can activate cancer stem cells and mesenchymal
cells in tumor tissue, which makes MIBC more invasive
and poor prognosis [3, 4]. Usually, treatment for bladder
cancer depends on how deeply the tumor invades into the
bladder wall. The standard clinical treatment for MIBC
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patients after transu rethral radical cystectomy is neoadju-
vant chemotherapy, such as cisplatin chemotherapy; how-
ever, about 50% of these patients developed drug resis-
tance and metastatic recurrence and eventually died of the
disease [5–7]. Although some studies have revealed mo-
lecular mechanisms of MIBC at different perspectives
[8–10], knowledge on genetic markers and the prognosis
of MIBC patients remains scanty. In consideration of the
highly invasive nature and the genetic variability of MIBC,
exploring the gene-based prognostic markers for MIBC are
thus of great importance in clinics.

Weighted gene co-expression network analysis
(WGCNA) which emerged as a method for multigene anal-
ysis to discover the relationships between gene-gene, and
gene-traits has been utilized to study a wide range of bio-
logical systems. Different from the conventional clustering
rule, WGCNA establishes a scale-free topological network
which is similar to protein-protein interaction (PPI) network
for weighted Pearson correlation coefficient matrix.
WGCNA further clusters unsupervised hierarchical cluster-
ing to classify functionally similar genes into a single mod-
ule, which is more in line with the biological relevance. As a
powerful technique for multigene analysis, WGCNA is
widely used in finding potential genotypic and phenotypic
markers for various types of cancer [11–13] .

In this study, we used the WGCNA algorithm to ana-
lyze the messenger RNA Seq expression data of 401
MIBC samples from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/). Among the
constructed co-expression modules, we selected the mod-
ules which were associated with clinical manifestations
such as overall survival (OS) and further screened out
potential prognostic biomarkers. Furthermore, the selected
markers were validated in an independent external dataset
of 80 MIBC samples from The European Bioinformatics
Institute (EMBL-EBI) database (https://www.ebi.ac.uk/).
In addition, we explored the potential relationship
between identified prognostic markers and EMT.

Methods

Data Collection

The raw expression profiles of messenger RNA as well as
related demographic and clinical data of patients with
muscle-invasive bladder urothelial carcinoma (MIBC)
were downloaded from the data repository of TCGA (The
Cancer Genome Atlas: https://portal.gdc.cancer.gov/) and
EMBL-EBI (The European Bioinformatics Institute:
https://www.ebi.ac.uk/). The TCGA dataset, from which a
total of 420 valid pieces of individual data were obtained,
including 401 cancer tissues and 19 normal tissues, was

used as discovery dataset to construct co-expression net-
work and to identify potential prognostic biomarkers as
well [14]. While dataset E-MTAB-1803 from EMBL-EBI
was utilized to validate the findings from TCGA, which
included 80 valid pieces of data [15].

Data Preprocessing

BioMart online tools (http://asia.ensembl.org/biomart/
martview/) were applied to annotate the mRNA expression
data and to calculate the average value of multiple probes
corresponding to a single gene. Not annotation and low
abundant mRNAs were filtered out accordingly.

EMT Scores

We used EMT (epithelial mesenchymal transition) signature
genes to calculate the EMT score, which was applied to eval-
uate the mesenchymal expression pattern of each patient [16].
The algorithm was defined as the difference between mean
expression values of mesenchymal markers and the mean ex-
pression values of epithelial markers. A higher score repre-
sents a more inclination to mesenchymal expression.

Screening Differentially Expressed Genes

The BDESeq2^ R package was employed to screen the
differentially expressed genes (DEGs) between normal
bladder and muscle-invasive bladder urothelial carcinoma
samples from TCGA dataset [17]. Expression data was
normalized by performing the BVST^ function provided
by BDESeq2^ R package. DEGs were selected according
to the following cutoff values: adjusted P < 0.05 and
|logFC (log2 fold change) | > 1.

Co-Expression Module Construction

After differential expression analysis, DEGs were selected
for the construction of co-expression network. The
BWGCNA^R package was performed to construct gene
network [18]. First, zero expression genes were eliminated
by BgoodSamplesGenes^ function, and the samples were
clustered hierarchically to eliminate the samples with obvi-
ous outliers. Second, Pearson correlation coefficient (PCC)
was calculated for all genes to obtain correlation matrix,
and the adjacency matrix was constructed by calculating
power function (ai, j = |Cori, j|

β (Cori, j denotes the PCC
between gene i and gene j; β was a soft-threshold, which
strengthens the strong correlation, punishes the weak cor-
relation and avoids the selection of an arbitrary cut-off) [11,
19]. Third, the adjacency matrix was transformed into a
scale-free topologically overlapping matrix (TOM) which
had more biological relevance and could be used to
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measure the network connectivity of a gene defined as the
sum of its adjacency with all other genes [20]. Similarly, the
intramodular connectivity was defined as the connectivity
between a gene and other genes within a module. Fourth,
the similarity distance between genes was calculated based
on topological overlap matrix, and the average linkage
clustering was carried out accordingly. Based on the crite-
rion of at least 30 genes in each module, the cluster tree was
dynamically cut and the co-expressed genes were grouped
into a module which was represented by a designated color.
Finally, the MEs (module eigengene), the first principal
component of each module, were calculated as the repre-
sentation of the module. Module membership was conse-
quently defined as coefficients of correlation between
genes and module MEs.

Survival Analysis

Survival analysis was carried out using Bsurvival^ R packages
(http://cran.r-project.org/web/packages/survival/index.html).
The hazard ratios (HRs) and the corresponding 95% confi-
dence intervals (CIs) were calculated using a Cox PH regres-
sion model and survival curves were plotted from Kaplan–
Meier estimates. For single gene survival analysis, expression
level of genes were categorized into high and low by median
value and modules were accordingly divided into high and
low expressed in all samples. Overall survival was used as
the ending points of the study.

Screening and Verification of Hub Genes

Hub gene was defined as having high intramodular con-
nectivity (k.in) and highly associated with clinical traits as
well. In this study, the selection of hub genes was guided
by the following criteria: (i) internal connectivity ranked
as the top 20 of all genes in the module, and (ii) GS (gene
significance) which was defined as negative log10 for P
value of gene cox regression was greater than 1.5. In the
validation dataset, that is, E-MTAB-1803, cox regression
analysis was performed to verify the effect of hub gene on
prognosis of MIBC patients.

Gene Function Analysis

Gene ontology (GO) annotation, enrichment analysis and
pathway analysis were carried out with BclusterProfiler^ R
package to explore the most likely gene function [21]. This
R package crawls the latest annotation information from Gene
Ontology Consortium site online (http://www.geneontology.
org/) and Kyoto Encyclopedia of Genes and Genomes (https://
www.kegg.jp/), which together reduced background noise
information and made the results more reliable.

Results

Screening of Differentially Expressed Genes (DEGs)

In this study, 2287 up-regulated mRNAs and 1938 down-
regulated mRNAs total 4225 DEGs were detected from a total
of 20,075 genes according to the criteria of BP (Benjamini
adjusted P value) < 0.05^ and B|logFC (log2 Fold Change) |
> 1^, based on differential expression analysis from 420
MIBC messenger RNA Count data.

Identification of Co-Expressed Gene Clusters

Weighted gene co-expression network analysis (WGCNA)
algorithm was performed to analyze the expression of 4225
genes in 401 MIBC samples. We chose β = 4 as the soft
threshold to weight the correlation matrix and checked
scale-free topology (Supplementary file 1). Totally, 8 co-
expression modules and 1 non-co-expression module
(marked as grey) were identified (Fig. 1a). Number of
genes contained in the constructed modules ranged from
53 to 2386 (Table 1). MEs matrix which was obtained by
principal component analysis provided the information of
overall expression level of each module. For any single
module, Pearson correlation coefficient was calculated be-
tween each gene within the module and its MEs, a measure
of module membership (Supplementary file 2).

Correlation between Co-Expression Modules
and Clinical Traits

Information on clinic traits was publically accessible in
TCGA database. To determine whether the co-expression
module is associated with clinical traits, we calculated
Spearman correlation coefficient (SCC) matrix between
MEs (undichotomized) and clinical features such as age,
gender, pathological grade, tumor TNM stage and so on.
We observed positive associations of the black (SCC =
0.24, P = 2 × 10−6), brown (SCC = 0.26, P = 8 × 10−8),
and purple (SCC = 0.18, P = 2 × 10−4) module MEs with
tumor pathological type (differentiated vs undifferentiat-
ed). Black module MEs (SCC = 0.28, P = 9 × 10−9) was
found to be correlated with tumor TNM stage (Fig. 1b).

Identifying Associations between Co-Expression
Modules with Overall Survival

In order to identify the relationship between co-expression
modules and overall survival (OS), cox regression model was
used to calculate the hazard ratio (HR), its 95% confidence
interval and p value of dichotomized MEs for each module
(Table 1). In unadjusted survival analyses, greenyellowmodule
(HR = 0.71, P = 2.4 × 10−2, 95%CI = 0.52–0.96) and black
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module (HR = 1.75, P < 1.0 × 10−3, 95%CI = 1.29–2.37) were
found to be associated with the OS. After multiple adjustment,

the significant association in the black module was still ob-
served in the discovery dataset (HR = 1.48, P = 3.02 × 10−2,

Fig. 1 Identification of MIBC co-expression modules by WGCNA, and
correlation of modules with clinical traits. a The unsupervised hierarchi-
cal cluster dendrogram was used to identify co-expression modules and
assign colors to them. A total of 9 modules were identified, ranging in size
from 53 to 2386 genes, and 53 non-co-expressed genes were classified as

grey modules. b The Spearman Correlation matrix Heatmap of co-
expression module MEs and clinical traits (age, gender, TNM stage,
pathological grade, survival status). The size of SCC represents the
strength of the relationship between MEs and clinical traits. The larger
the absolute value of SCC, the darker the color

Table 1 Survival analysis for gene co-expression modules with OS as endpoints in the discovery dataset and validation dataset

Module Gene
counts

Discovery dataset (N = 401) Validation dataset (N = 80)

Unadjusted Adjusted* Unadjusted Adjusted*

P HR 95% CI P HR 95% CI P HR 95% CI P HR 95% CI

Tan 54 1.37 × 10−1 0.80 0.59–1.07 2.64 × 10−1 0.83 0.59–1.15 9.50 × 10−1 0.98 0.53–1.81 6.17 × 10−1 0.76 0.27–2.19

Greenyellow 596 2.40 × 10−2 0.71 0.52–0.96 7.94 × 10−1 0.95 0.64–1.41 3.11 × 10−1 0.73 0.40–1.34 7.59 × 10−1 1.15 0.48–2.73

Red 160 2.88 × 10−1 0.85 0.63–1.15 2.84 × 10−1 0.83 0.60–1.15 5.01 e× 10−1 0.81 0.44–1.49 2.84 × 10−1 2.55 0.46–14.04

Black 2386 <1.00 × 10−3 1.75 1.29–2.37 3.02 × 10−2 1.48 1.04–2.11 2.90 × 10−2 2.01 1.07–3.75 3.55 × 10−2 3.59 1.09–11.79

Salmon 54 4.28 × 10−1 0.89 0.66–1.19 1.57 × 10−1 0.79 0.57–1.10 7.35 × 10−1 0.90 0.49–1.66 2.33 × 10−1 0.42 0.10–1.74

Blown 718 1.76 × 10−1 1.23 0.91–1.65 9.30 × 10−2 1.36 0.95–1.94 5.10 × 10−1 0.81 0.44–1.50 3.64 × 10−1 2.05 0.43–9.73

Pink 117 9.80 × 10−2 1.29 0.95–1.73 1.50 × 10−1 1.27 0.92–1.75 9.48 × 10−1 0.98 0.53–1.80 7.93 × 10−1 0.86 0.28–2.64

Purple 87 3.55 × 10−1 1.15 0.85–1.55 4.69 × 10−1 0.87 0.60–1.27 4.27 × 10−1 1.28 0.69–2.37 5.20 × 10−1 0.75 0.31–1.81

Grey 53 3.00 × 10−1 0.85 0.63–1.15 6.70 × 10−1 0.93 0.66–1.31 5.76 × 10−1 1.19 0.64–2.21 7.52 × 10−2 2.70 0.90–8.08

Entries in bold indicates results significant at the 0.05 level

*Adjusted for age, tumor TNM stage, gender, and pathological grade
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95% CI = 1.04–2.11) and validated in an independent external
dataset (HR = 3.586, P = 3.55 × 10−2, 95% CI = 1.09–11.79).
In addition, this discovery was consistent with our finding that
gene expression was correlated with higher tumor grade
(SCC = 0.24) and higher tumor TNM stage (SCC = 0.28) in
black module. Finally, we chose the black module for further
analysis for searching for hub genes.

Screening Hub Genes and Association with OS

First, we identified 517 genes significantly associated with
poor prognosis from 2386 genes contained in the identified
black co-expression module after univariate survival analysis.
HR values and corresponding 95%CIs with P values for all
genes were listed in supplementary file 2.

We, next, calculated the connectivity within the module and
the total connectivity (Supplementary file 2). According to the
size of GS value (> 1.5) and the strength of internal connectiv-
ity (k.in ranked as top 20), 8 genes associated with poor out-
comes in black module were identified as hub genes (BOC,
DDR2, MSRB3, MYLK, PDLIM3, ZNF521, RASL12,
CALD1) (Table 2). Furthermore, we conducted validation in
an external independent dataset for these 8 hub genes.
However, only three of them (DDR2, ZNF521, PDLIM3) have
been verified, and one (MSRB3) was marginally significant
(Table 2). Figure 2 showed Kaplan-Meier ‘s estimation of gene
expression with the time of death for the hub genes, in the
discovery dataset and the validation dataset. Additionally, we
calculated the correlation between the expression value of hub
genes and EMT scores and found that DDR2 (ρ = 0.85),
MSRB3 (ρ = 0.86), PDLIM3 (ρ = 0.82), ZNF521 (ρ = 0.78)
were positively correlated with EMT (Fig. 3).

Gene Function Analysis

In order to further understand the function of any designated
co-expression module, we used BclusterProfiler^ R package

for gene function annotation and enrichment analysis. GO
enrichment analysis showed that the biological processes
enriched by black modules included extracellular matrix orga-
nization, extracellular structure organization, and regulation of
membrane potential etc. Pathway analysis showed the path-
ways included neuroactive ligand-receptor interaction,
MAPK signaling pathway, cGMP-PKG signaling pathway
and calcium signaling pathway etc. (Supplementary file 3).

Discussion

The diversity in genetic background of muscle-invasive blad-
der urothelial carcinoma (MIBC) leads to a great variability in
cancer prognosis and response to treatment although new
forms of adjuvant chemotherapy have been proposed in
clinics [5, 22, 23]. Few studies had attempted to explore the
potentials of biological markers which could be relevant to
biochemical and clinical manifestations of MIBC at the level
of cellular and molecular origins or biological pathways [24];
however, there are no evidences that markedly linked genetic
markers with prognosis of MIBC so far. Based on the publi-
cally accessible data repository, we performed a powerful
coexpression-based analysis, WGCNA (weighted gene co-
expression network analysis), to analyze a messenger RNA
expression dataset to identify the relationships between gene-
gene, and gene-clinical manifestations, with focus on the
prognosis of MIBC. Overall, a total of 4225 genes expression
data coming from 401 MIBC patients had been analyzed in
this study. WGCNA uses the method of soft threshold to pow-
er the correlation coefficient between genes, transforms the
relationship between genes into scale-free topological over-
lapped networks in accordance with biological significance,
and utilizes the internal connectivity to measure the relation-
ship between genes. It can effectively reduce error caused by
manmade cut-off correlation coefficient. In addition, the un-
supervised learning method used by WGCNA effectively

Table 2 Survival analysis for hub
genes with OS as endpoints in the
discovery dataset and validation
dataset

Hub gene k.in rank Discovery dataset Validation dataset

P HR 95% CI P HR 95% CI

MSRB3 1 1.00 × 10−3 1.66 1.22–2.25 5.10 × 10−2 1.87 1.00–3.49

BOC 2 <1.00 × 10−3 1.76 1.29–2.38 6.60 × 10−2 1.79 0.96–3.32

DDR2 3 8.00 × 10−3 1.50 1.11–2.04 1.20 × 10−2 2.22 1.19–4.11

PDLIM3 5 7.00 × 10−3 1.52 1.12–2.06 3.20 × 10−2 2.01 1.06–3.82

RASL12 8 2.70 × 10−2 1.40 1.04–1.89 3.56 × 10−1 1.33 0.72–2.45

ZNF521 14 2.00 × 10−3 1.63 1.20–2.21 3.70 × 10−2 1.92 1.04–3.56

CALD1 18 1.10 × 10−2 1.48 1.09–2.01 2.50 × 10−1 1.43 0.78–2.62

MYLK 20 4.0 × 10−3 1.56 1.15–2.11 1.41 × 10−1 1.59 0.86–2.93

Dataset and validation dataset. Entries in bold indicates results significant at the 0.05 level

*k.in is the degree of connectivity between a designated gene and other genes in a module
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avoids the subjective decision error caused by the influence of
previous research reports.

In the present study, we constructed eight co-
expression modules from 4225 genes, calculated the ex-
pression level of modules based on principal component
analysis, and performed correlation analysis and Cox PH
regression analysis. We observed that high expression of

black module containing 2386 genes was associated with
worse overall survival of MIBC patients in the discovery
dataset. After multiple adjustment, high expression level
in black module still significantly predicted an unfavor-
able prognosis in discovery dataset (HR = 1.48, 95% CI =
1.04–2.11). This remarkable finding was verified in an
independent external validation dataset. Furthermore, we

Fig. 2 Kaplan-Meier estimates of
probability of overall survival
among different expression level
of hub genes. a DDR2 Kaplan–
Meier survival plot for OS in dis-
covery dataset. a` DDR2Kaplan–
Meier survival plot for OS in val-
idation dataset. b MSRB3
Kaplan–Meier survival plot for
OS in discovery dataset. b`
MSRB3 Kaplan–Meier survival
plot for OS in validation dataset. c
PDLIM3 Kaplan–Meier survival
plot for OS in discovery dataset.
c` PDLIM3 Kaplan–Meier sur-
vival plot for OS in validation
dataset. d ZNF521 Kaplan–Meier
survival plot for OS in discovery
dataset. d` ZNF521 Kaplan–
Meier survival plot for OS in val-
idation dataset. The increased ex-
pression of these hub genes indi-
cates poor prognosis
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screened out eight hub genes in the discovery dataset,
three of them being verified to be significant (DRR2,
PDLIM3, ZNF521) and one being marginal significant
(MSMR3) in the validation dataset. Moreover, biological
relevances were mainly suggestive of extracellular matrix
organization, extracellular structure organization, regula-
tion of membrane potential etc. and the biological path-
ways could be the neuroactive ligand-receptor interaction,

MAPK signaling pathway, cGMP-PKG signaling path-
way, calcium signaling pathway and so on.

DDR2, one of the RTKs (receptor tyrosine kinases) mem-
bers in collagen receptor family, is mainly involved in extra-
cellular matrix process and ERK1 / ERK2 regulation. It plays
an important role in various cellular functions and disease
processes such as malignant progression of ovarian, breast,
prostate, lung and kidney. DDR2 was reported to influence

Fig. 3 Plot of spearman correlation between (a) EMT Score and DDR2
expression value, b EMT Score and MSRB3 expression value, c EMT
Score and ZNF521 expression value, d EMT Score and PDLIM3

expression value. The x axis is the normalized mRNA expression value,
and the y axis is the EMT score
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the invasiveness of tumor cells by regulating the activity of
matrix remodeling enzyme in the malignant progression of
cancer [25–27]. A Japanese study found that high expression
level of DDR2 was relevant to a worse prognosis of colorectal
cancer [28]. A cohort study conducted in Taiwan, for the first
time to our knowledge, associated overexpression of DDR2
with unfavorable prognosis of MIBC, which was consistent
with the main findings in our study [24].

PDLIM3 encoding a protein that contains a PDZ domain
and a LIM domain, had been reported to be associated with
the development of hypertrophic cardiomyopathy, but not car-
cinogenesis [29, 30]. As we know, prognosis and PDLIM3
overexpression in MIBC patients had not been associated so
far. The underlying mechanism of unfavorable prognosis for
the high expression of PDLIM3 in MIBC patients observed in
our study remains unknown. The GO annotations for this gene
in our study had already linked it with cytoskeletal protein
binding and metal ion binding. The mechanism underlying
the carcinogenesis, malignant prognosis and pathological dif-
ferentiation warrants further study.

Zine finger protein 521 (ZNF521) is a polyzinc finger
transcription factor which is mainly involved in cell differ-
ent ia t ion and transcr ipt ion regulat ion processes.
Overexpression of ZNF521 was positively correlated with
MLL-rearranged acute myeloid leukemia as a strong regu-
lator of hematopoietic stem cell homeostasis in a recent
study [31]. Based on a human medulloblastoma study,
ZNF521 may play an indirect role in the process of cell
cycle and apoptosis through the interaction with NuRD
complex and thus affect the occurrence and development
of tumor [32]. Translation elongation factor 1 subunit beta
(EFB1) had been found to play an inhibitory role in the
development of cancer. Inhibition of EFB1 expression by
binding the carboxyl terminal of ZNF521 to EFB1 had been
observed in a study of B lymphocytes although the mecha-
nism by which EFB1 inhibits the development and metas-
tasis of cancer has not yet been clearly established [33, 34].
Further study focusing on the relationship between ZNF521
and EFB1 may shed light on the underlying mechanism of
ZNF521 expression with prognosis of MIBC.

The methionine sulfoxide reductase MSRB3 mainly lo-
cated in mitochondria and endoplasmic reticulum (ER)
belongs to one of the three types of MRSB family and
encodes an enzyme that catalyzes methionine R sulfoxide
reduction to methionine [35, 36]. Role of MSRB3 in ma-
lignant procession has not been clearly elucidated. Studies
reported that MSRB3 was involved in the regulation of
cell cycle and cell proliferation in breast cancer and hepa-
tocellular carcinoma and the overexpression of MSRB3
may promote the proliferation of cancer cells. The biolog-
ical mechanism could due to the inhibition of ER stress
response and the imbalance of cellular calcium homeosta-
sis [37–40]. To date, expression of MSRB3 had not been

associated with cancer prognosis. The possible biological
relevances suggested by the annotation analysis in our
study had been directed to the calcium homeostasis, the
signal exchange between cells, or excessive proliferation
of cancer cells, which, all together, may promote the un-
favorable prognosis of MIBC patients.

Epithelial–mesenchymal transition induces polar epi-
thelial cells to obtain interstitial phenotype and promotes
the production of cancer stem cells, which plays an im-
portant role in cancer metastasis, drug resistance and es-
cape apoptosis [41, 42]. Studies had shown that EMT
process was associated with poor prognosis of MIBC
[4]. Our main finding that the correlation of the expres-
sion level of DDR2, MSRB3, PDLIM3 and ZNF521 pos-
itively with EMT status may suggest that the high expres-
sion of four identified prognostic marker genes could pro-
mote EMT process. The existing mechanism underlying
this association was explained as that DDR2 may promote
EMT through ERK2/SNAIL1 pathway, mTORC2 activa-
tion and ATK phosphorylation [43, 44]. More interpreta-
tions need to be discovered in further studies.

WGCNA, a powerful systems biology approach, was used
to analyze mRNA expression dataset composed of 401 MIBC
samples to identify genes which could be potentially associ-
ated with cancer prognosis. WGCNAwas further used to an-
notate the underlying biological mechanism responsive for the
postulated association. The distinguishing advantage of
WGCNA include that the unsupervised nature of hierarchical
clustering method could avoid potential biases and subjective
decisions due to previous reports of related studies or the
supervised selection of genes. Notwithstanding, the present
study do have limits. First, sampling bias may exist consider-
ing the relatively small size of the validation dataset, which
may hinder the concordance of the significant results between
both datasets to some extent. In addition, absence of relevant
clinical manifestations in TCGA database impeded further
exploration of their effects on the observed association.

Conclusions

In summary, we first constructed eight gene co-expression
clusters based on a total of 20,075 genes from TCGA dataset
by using WGCNA algorithm, from which we further identi-
fied and validated four novel genes which at their high level of
expression were observed to be correlated with unfavorable
prognosis of MIBC patients. Moreover, the constructed mod-
ules were found to be associated with tumor TNM stage and
pathological grade in the same direction with prognosis. In
addition, biological function of these four potential prognostic
biomarkers by using the annotation analysis could be directed
to cancer cell proliferation by regulation of membrane poten-
tial and ligand-receptor interaction for a distinct possibility.
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