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Abstract
Suppressor of cytokine signaling1 (SOCS1), as a member of SOCS family, has been widely studied in recent years. It has been
found that SOCS1 not only participates in cell signaling, but also in ubiquitination mediated protein degradation process. Both of
these two functions play an important role in the growth and proliferation of cells. Therefore, researchers speculated that SOCS1
also played an important role in tumors. This review mainly focuses on the structure, transcriptional regulation and functions of
SOCS1 protein, and finally describes the possible clinical role of SOCS1 protein in tumors.
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Introduction

Cytokines bind to their specific receptors on the surface of cell
to transduce biological information to target cells. Their relat-
ed signaling pathways control and regulate fundamental bio-
logical processes including hematopoiesis, inflammation, im-
munity and the development of tumor [1]. Suppressors of
cytkine signalling (SOCS) proteins are modulators of cytokine
and growth factor signaling whose aberrant regulation have
been linked to a variety of disease. Among them, SOCS1 has
been extensively investigated. Initially, it was recognized as a
negative feedback regulator of cytokine signaling, for exam-
ple, the Janus kinases–signal transducers and activators of
transcription (JAK–STAT) signaling pathway, which is impor-
tant in cellular activation, proliferation, and differentiation [2].
Then it has been found that SOCS1 was also involved in E3
ubiquitin ligases complex, acting as substrate-recognition
modules to mediate the polyubiquitination and subsequent

degradation of substrate proteins which may be the key com-
ponents of cytokine signal transduction pathways [3]. Both
two functions of SOC1 are very important to regulate the
growth and proliferation of cell. Therefore, numerous studies
have speculated that SOCS1 may play a role in regulating
tumor growth and proliferation, such as hepatocellular carci-
noma [4, 5], melanoma [6, 7], gastric cancer [8] prostate can-
cer [9] and so on. In this review, we mainly describe the
structure, regulation of SOCS1 and its role in cell signaling
and ubiquitination. Then we focus on the reported potential
clinical role of SOCS1 in tumor.

Structure of SOCS Family

As so far, eight members of SOCS protein family are identi-
fied, they are SOCS1–7 and CIS(cytokine-inducible SH2-
containing protein). As reported, they contain a typical C-
terminal SOCS box motif, a central SH2-domain and an N-
terminal domain of variable length and sequence. Among
them, SOCS1-SOCS3 and CIS had higher similarity not only
in sctructure but also in function. Apart from SOCS4–7 which
had long N- terminal domains, they had short N- terminal
domains. SOCS1-SOCS3 and CIS are induced by cytokines.
But regarding SOCS4–7, their functions have not been iden-
tified clearly yet.

The SOCS box of SOCS family is a 40-amino acid motif,
which functions to recruit an E3 ubiquitin ligase complex
consisting of the adapter proteins elongins B and C, Rbx2
and the scaffold protein Cullin5. So the SOCS box-
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containing proteins are thought to act as substrate-recognition
modules to mediate the polyubiquitination and subsequent
degradation of substrate proteins by the 26S proteasome
[10]. There are two core interaction sites identified in the
SOCS box: the BC-box and the Cul-box. The BC-box is a
conserved N-terminal region of 12 residues, responsible for
recruiting elongins B and C. This recruiting is mainly through
the highly conserved leucine in the +4 position in the BC-box
[11, 12]. The Cul-boxwas in the C-terminal of SOCS proteins,
mediating Cullin5 binding via an BLPXP^ motif [13].

The SH2 domain of SOCS proteins has an N-terminal-helix
termed the extended SH2 subdomain (ESS), which functions to
stable the phosphotyrosine-binding loop. It can bind to phos-
phorylated residues of the receptor complex, folding the SOCS
box-associated E3 ubiquitin ligase so that it can recognize its
substrate [14, 15]. Hence, the SH2 domain may act as a deter-
minant of the target which the SOCS proteins bind to. As re-
ported, the SH2 domain of SOCS1 determined it could binds to
the activation loop of JAKs [16]. But in the CIS, SOCS2, and
SOCS3 proteins, SH2 domain bind to phosphorylated tyrosine
residues of the activated cytokine receptors. Additinally, only
SOCS1 and SOCS3 in SOCS family have a unique N-terminal
motif named KIR (kinase inhibitory region) domain which is a
12-residue motif that functions to inhibit JAK tyrosine kinase
activity. It is reported that KIR domain of SOCS3 occludes the
substrate-binding groove on JAK2, blacking substrate associa-
tion [17, 18]. So the KIR domain might function as a
pseudosubstrate of JAKs, which is essential for the suppression
of cytokine signal. However, it needs more confirmation in
SOCS1 protein.

Summarily, according to the structure of SOCS1 protein, its
functions is mainly divided into two parts: Firstly, as a signal
inhibitor, it can inhibit the transmission of cell signal, regulating
proliferation and apoptosis of cell; secondly, as a small part to
join in the process of ubiquitination, mediating the degradation
of ubiquitinated substrates to regulate the growth of the cells.

SOCS1 and its Regulation

As reported, the SOCS1 gene in humans located on 16p13.3
and codes for a protein with 211 amino acids [19]. It is highly
conserved among various species, including human, chimpan-
zee, dog, cow, rat and chicken [19].

The transcriptional regulation of SOCS1 is mainly reported
in three aspects: Firstly, it can be regulated by the cell signal
factors: the promoter of SOCS1 contains STAT binding region,
which can be regulated by STAT signaling factors. Its specific
mechanism is as follows: cytokine binds to the receptor to in-
duce its oligomerization. Then oligomerizatied receptor facili-
tates cross-phosphorylation and activation of the receptor-
bound JAK kinases. JAKs phosphorylate receptor tyrosines to

recruit and activate STATs. Activated STATs dimerize and
translocate into the nucleus to induce the expression of
SOCS1 [20]. But interestingly, SOCS1 protein can bind to the
activation loop tyrosine residues of JAKs and inhibits their
activity, interrupting the JAK–STAT pathway, negatively regu-
lating itself expression. Then, it was also reported that the
SOCS1’s promoter is actively repressed by growth factor
independence-1B (GFI-1B) transcriptional repressor.
Erythropoietin (EPO) stimulation downmodulates GFI-1B ex-
pression in EPO-responsive cell lines, allowing transcriptional
activation of SOCS1 [21]. SOCS1 can also be induced by other
cell signal factors, such as IL-2 [2, 22], IL-3 [2], IL-4 [20,
23–26], IL-6 [20, 27], IL-13 [26], interferon-γ (IFN-γ) [28,
29], IFN-α/β [30, 31], EPO [2, 27], G-CSF [20], leukemia
inhibitory factor (LIF) [20], and growth hormone (GH) [32,
33] and so on.

Secondly, its expression was regulated by the methylation
levels of its promoter: Studies have ascertained that the pro-
moter of SOCS1 is located on the CpG island of the 5′-end this
gene, and its abnormal methylation can result in silencing of
SOCS1 expression [34].

Thirdly, its expression level was also regulated by post-
translational modification. It has been found that SOCS box
played a role in maintaining SOCS1 stability. In vitro overex-
pression studies [35] have demonstrated that deletion of the
SOCS box decreases the half-life of SOCS-1 leading to the
suggestion that a major role for the interaction of the SOCS
box with elongins B and C is to stabilize the SOCS protein
[11]. But controversially, another study group observed that
mutations within the SOCS box that destabilize the interaction
between SOCS1 and Elongin BC prevented SOCS1 degrada-
tion [36], it was suspected that Elongin BC may be targeting
SOCS1 to proteasomal degradation. Besides above findings,
there is another finding that SOCS1 could bind to TRIM8/
GERP which is a Ring finger protein, and this interaction facil-
itates SOCS1 degradation [37].

What’s more, it has been found that miRNAsmay also play
a role in post-translational modification of SOCS1. It was
found that miR-221-5p could regulate SOCS1 expression
through targeted its 3’UTR to regulate the proliferation, mi-
gration of prostate cancer cells in vitro and tumorigenesis
in vivo [9]. Then, another group found that miR-155 could
regulate SOCS1 expression by the samemechanism. It report-
ed that SOCS1 protein expression was increased when miR-
155 in mouse osteoblastic cells was knocked down, and it was
suppressed when osteoblastic cells was transfected with miR-
155 [38]. This phenomenon was also proved in T cell by
another group which found that FOXP3 contributes to the
maintenance of SOCS1 levels by negatively regulating miR-
155 in T cells [39].

So far, many studies have been carried out on SOCS1. But it
still needs more researches on the detailed regulation
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mechanism of SOCS1 which may play an important role in
understanding the role of SOCS1 in diseases.

The Role of SOCS1 in Cell Signaling

There are mainly two pathways SOCS1 involved in: one is
JAK/STAT signaling pathway, the other is TLR signaling.
The JAK–STAT pathway is an essential intracellular mecha-
nism of cytokines that regulates gene expression, cellular acti-
vation, proliferation, and differentiation [40]. It was activated
by the cytokines receptor aggregation and trans-phosphoryla-
tion. Activated JAKs can phosphorylate tyrosine residues in the
cytoplasmic domain of cytokine receptors, creating recruitment
sites for Src-homology 2 (SH2) domain of STATs proteins.
Then phosphorylated STATs dimerize and translocate into nu-
cleus to induce transcription of cytokine-responsive genes,
which mediates specific cellular functions [41].

In JAK/STATsignaling pathway, SOCS1 can interact direct-
ly with the kinase domain (JH1) of JAKs, including JAK1,
JAK2, JAK3, and Tyk2, via its ESS and KIR domains,
inhibiing their kinase activation and catalytic activity. Then
the downstream substrates such as the STAT proteins’ phos-
phorylation and activation were interrupted [2, 42, 43]. This
results in the termination or attenuation of JAK-mediated sig-
naling, which is crucial in the proliferation, differentiation and
survival of cells.

Lipopolysaccharide (LPS) is an integral cell wall component
of Gram-negative bacteria and can provoke a life-threatening
condition called endotoxic shock [44]. It was recognized by a
member of Toll-like receptors (TLRs) which is essential for the
recognition of specific patterns of microbial components
[45–47]. Activation of TLRs by LPS would induce responses
of host innate immune cells to LPS. But sometimes this response
was excessive, causing various tissue damage, circulatory failure,
and occasionally death of host [44]. So down-regulating TLR
signaling would ensure host have a safety responses to LPS
and/or unresponsiveness to a second stimulation with LPS [48].
Then it has been found that SOCS1 play a role in down-
regulating TLR signaling [34]. The mechanisms underlying
SOCS1 regulating TLR signaling could be divided into two cat-
egories. The one is SOCS1 can down-regulate the TLR signaling
by interference with the JAK/STAT pathway which was activat-
ed by the initial TLR activation. The other is SOCS1 can interact
with TLR adaptor proteins such as MAL and IRAK [34, 49, 50]
for degradation, as well as attenuate cytokine signaling activated
by initial TLR stimulation. However, it’s interestingly that
SOCS1 can also be induced indirectly through cytokines induced
by initial TLR activation, such as IL-6 and INF-b [51]. Therefore,
SOCS1 is involved in a negative feedback regulation in the TLR
signaling. However, whether similar mechanisms of SOCS1-

mediated regulation of TLR signaling occur in different cell lin-
eages are still unclear and need further investigations.

The Role of SOCS1 in Ubquitination

As previously described, SOCS box could recruit E3 ubiquitin
ligases complex, acting as substrate-recognition modules to
mediate the polyubiquitination and subsequent degradation
of substrate proteins by the 26S proteasome. Therefore the
main role of SOCS1 is acting as the substrate recruitment
modules of E3 ubiquitin ligases (or elonginBC-cullin5 ubiq-
uitin ligase).

It has now been shown that the SOCS box is only partially
folded in the absence of elongins B and C and that their pres-
ence is required to stabilise the protein [12]. However, in com-
parison to the other six family members, the SOCS box of
SOCS1 bound with weaker affinity to cullin5 [52]. There is
now direct evidence that SOCS1 can act as the substrate rec-
ognition component of an ECS-type E3 ubiquitin ligase com-
plex to regulate the half-life of Vav [53] and TEL/JAK2 fusion
protein [54, 55]. But interestingly, SOCS1 only binds to the
substrates which have been posttranslationally modified. For
example, when SOCS1 binds to JAKs and other potential
substrates, it requires their prior activation by phosphorylation
on specific tyrosine residues [43, 56, 57]. And as reported,
SOCS proteins recruit substrates for lysine-48 linked
ubiquitination, targeting those substrates for proteasomal deg-
radation [58]. But on the other hand, signal transduction can
be prolonged for some cytokines in the presence of protea-
some inhibitors [59, 60]. However, in in-vitro overexpression
studies, deletion of the SOCS box from SOCS1 had little
impact on the inhibition of cytokine signal transduction [35,
43]. Therefore, it requires more research to study whether
SOCS1 is involved in the ubiquitination degradation process
of cell signal factors.

Recently, it has been found CUEDC2 which is a novel
interacting partner of the SOCS1 protein to suppress
SOCS1’s ubiquity-mediated degradation, JAK1-STAT3 path-
way activation and leukaemogenesis of AML [61]. This im-
plies that the anti-caking agent of SOCS1, may inhibit
SOCS1-mediated ubiquitination degradation process to inhib-
it the progression of diseases.

Methlytion of SOCS1 in Tumors

As studies showed, SOCS1 often keeps hypermethylation in
tumors. And its methylation level is often related to the clin-
ical characteristics of tumors.

Several studies found that the promoters of SOCS1 were
often hypermethylation in hepatocellular carcinoma. Okochi
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O. et al. found that hypermethylation of SOCS1 detected in 30
of 50 (60%) HCC specimens and this was more obviously in
HCC derived from liver cirrhosis (P = 0.0207) when they ana-
lyzed the correlation between the clinic pathological data and
SOCS-1 aberrant methylation [4]. Then Chu PYet al. approved
this results when they analysis the methylation status of CpG
sites at the promoter region of SOCS1 in HCC samples. Their
further study revealed that the promoter methylation of SOCS1
not only was correlated with HCC derived from liver cirrhosis
(p = 0.044) but also with tumour size (p = 0.038) [5]. At the
same time, another group found hypermethylation of SOCS1
in hepatocellular carcinoma after liver transplantation often had
a significantly worse recurrence-free survival (RFS) [62].
Interestingly, there is also a group found that methylation status
of SOCS1 could be as a clonal marker for multicentric hepato-
cel lular carcinoma when it was used with other
hypermethylated genes, such as p16, DAP-Kinase, GSTP1,
APC, RIZ1, SFRP1, SFRP2, SFRP5, RUNX3 [63].

Then in gastric carcinoma, studies found that hypermethy-
lation of the SOCS1 gene was detected in 33 (44%) of 75
gastric carcinoma (GC) tissues, but only in 3 (12%) of 25
corresponding nonneoplastic mucosae. And the methylation
of the SOCS1 had a significantly correlation with the lymph
node metastasis, advanced tumor stage and reduced expres-
sion of SOCS1 in GC tissues (p = 0.009, 0.034 and 0.002,
respectively) [8]. These results suggest that inactivation of
the SOCS1 gene may play an important role in development,
progression and metastasis of GC, but it need more experi-
ments to approve this.

What’s more, the correlation between hypermethylation of
the SOCS1 and tumor stages was also found in esophageal
squamous cell carcinoma. Hussain S. and his team found aber-
rant promoter methylation of the SOCS1 gene was found in
45% of the esophageal tumor tissues, which was also found
to be significantly associated with advanced stage of esophage-
al carcinoma (P < 0.01) [64]. Additionally, Sobti RC et al.
found in cervical carcinoma, 61% of the tumor tissues showed
aberrant promoter methylation of SOCS1, and this situation is
significantly associated with severity of the disease (p < 0.01)
[65]. Apart from above studies, hypermethylated SOCS1 were
also found in 60% of acute myeloid leukemia (AML) [66, 67],
62.9%–75% of multiple myeloma (MM) [68, 69], 50% of pan-
creatic cancers [70], 75% of melanoma [71], 40% of
hepatoblastoma [72].

In summary, the hypermethylation status of SOCS1 might
be as a tumor suppressor in the progression of tumor. Related
mechanism may because SOCS1 is a JAK/STAT inhibitor,
regulating the JAK/STAT signal transduction pathway which
is an important pathway that relays signals from various cyto-
kines in the extracellular matrix into the cell. When SOCS1
was methylated, its expression was repressed, leading the
JAK/STAT pathway to be active which was the main reason

for the proliferation, migration of tumor cell [68, 70].
However, it still needs more studies to support this idea.

Potential Clinical Role of SOCS1 in Tumors

Now it has been discovered that the progress of tumors de-
pends not only on the genetic mutation of malignant tumor
cells, but also on the changes of tumormicroenvironment such
as matrix, blood vessels, infiltrating inflammatory cells. Then
it has been shown that immunity and inflammation are the two
core parts that constitute the tumor microenvironment.
However, no matter immunity or inflammation, they are all
have a relationship to the cytokines. Immune response would
release cytokines, but excessive release of cytokines could
lead to an inflammatory reaction. Then overreaction of inflam-
mation is just the start of the cancer.

Therefore, SOCS1, as a suppressor of cytokines signaling
protein, is considered to play an important role in in tumor
suppression. It has been shown that SOCS-1 is an essential
physiological inhibitor of IFN-gamma signaling. Mice lacking
this gene die in the early postnatal period from a disease char-
acterized by hyper-responsiveness to endogenous IFN-gamma.
But when the SOCS1 knockout mice were crossed with IFN-γ,
Stat1, Stat6 or IFN-α receptor 1 -deficient mice, this lethal
phenomenon could be restored, but these deficient mice are
prone to inflammatory diseases, support the idea that SOCS1
plays an important role in the body’s inflammatory response
[73]. Then DC cell-mediated anti-tumor immune response can
be modulated by regulation of SOCS1 expression. Studies
showed that SOCS1-silenced DCs induce stronger anti-tumor
immunity [74–77]. SOCS1 also plays an important role in the
regulation of regulatory T cells (Tregs), which has been shown
to regulate antitumor immunity. It has been found that SOCS1-
deficiency in Tregs resulted in strong enhancement of anti-
tumor immunity (Takahashi et al., unpublished data, reviewed
in [78]) Then researchers also obtained encouraging results by
silencing SOCS1 in macrophages to confirm its antitumor im-
munity [79]. In addition to its anti-tumor immunity, SOCS1
also has other anti-tumor mechanism. The study found
SOCS1 could inhibit the growth of prostate cancer cells by
down-regulating the expression of cyclins and cyclin-
dependent kinases. And SOCS1 can also induce cycle arrest
in tumors [80, 81].

Accordingly, some anti-tumor strategies targeting SOCS1
have been developed. For example, demethylation drugs, such
as DAC, can restore SOCS1 expression in tumor cells and
may serve as a potential strategy for antitumor therapy [68].
And Gene therapy with SOCS1 for gastric cancer induces G2/
M arrest and has an anti-tumor effect on peritoneal carcino-
matosis [78]. However, although SOCS1 has anti-tumor po-
tential, it needs more investigation to study the specific role of
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SOCS1 in tumor which will help us to develop more useful
anti-tumor strategies.

On the other hand, SOCS1 has the potential function to be
used as a diagnostic marker for tumor. It has been demonstrat-
ed that higher expression of SOCS1 mRNA is associated with
earlier tumor stage and better clinical outcome in breast cancer
[82]. However, other reports indicate that the positivity and
intensity of SOCS1 staining were associated with tumor pro-
gression, as indicated by tumor invasion, tumor thickness and
stage of disease [6]. And reduced SOCS1 expression is asso-
ciated with tumor invasion and angiogenesis to promote brain-
homing melanoma cells metastasis to the brain [7].
Additionally, it has found that SOCS1 expression is undetect-
able in normal individuals but overexpression of SOCS1
mRNA is detected in 65% positive CML patients in total
WBC and 60% in granulocytes at diagnosis. Overexpression
of SOCS1 mRNA is associated with poor cytogenetic re-
sponses to IFN-α and shorter median PFS [83]. What’s more,
as mentioned in above part, the SOCS1 can also be used as a
diagnostic marker for tumor with other genes [63]. All these
studies indicate that SOCS1 may be used as a marker for
diagnosis of tumor.

Conclusion

As the first member of SOCS protein family, the understand-
ing of the structure and function of SOCS1 have been greatly
extended. Recently, there have been more and more reports on
the possible role of SOCS1 in tumors, but in these reports, the
role of SOCS1 are uncertain. For example, some reports sug-
gest silencing SOCS1 in tumor cells can improve the sensitiv-
ity of tumor cells to IFNs and inhibit the proliferation of tumor
cells, But others show that by using demethylation drugs, such
as DAC, to restore the expression of SOCS1 in tumor cells,
one can restore the tumor-suppressive function of SOCS1
[34]. Therefore, further researches are still necessarily needed
to fully reveal the complex mechanisms of action, interaction
and compensation among SOCS1 and other SOCS proteins
and between SOCS and other proteins. Understanding these
may help us to understand its role in the pathophysiology of
tumor and find the appropriate therapeutic strategies.
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