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Abstract
Long noncoding RNAs (lncRNA) have emerged as vital molecules governing epithelial-to-mesenchymal transition (EMT) in
cancers. Translation regulatory RNA 1 (TRERNA1) is one such lncRNA known to enhance the transcriptional activity of the
EMT-transcription factor, Snail. We have previously demonstrated differential upregulation of EMT-transcription factors and
cadherin switching across various clinico-pathologic-molecular subclasses of ependymomas (EPN). With an aim to analyze the
correlation between the expression of TRERNA1 in EPNs, we performed gene expression analysis for TRERNA1 on 75 Grade II/
III EPNs and correlated with tumor site, C11orf95-RELA fusions, age, MIB-1 proliferative indices, and outcome wherever
available. Upregulation of gene expression levels of TRERNA1 was seen in intracranial EPNs, with highest expression levels
in pediatric posterior fossa EPNs. High TRERNA1 expression was found associated with higher proliferative indices (p = 0.034)
and shorter progression free survival (p = 0.002). Our study, for the first time, demonstrates an association between TRERNA1
expressions and pediatric posterior fossa EPNs. Further in-vivo and in-vitro studies are required to confirm these findings and
evaluate TRERNA1 as a novel biomarker and potential therapeutic target in childhood PF-EPNs.
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Introduction

Ependymomas (EPNs) are uncommon gliomas with poorly
defined prognostic criteria [1–6]. Incomplete surgical resec-
tion, pediatric age and intracranial tumor locations have been
accepted as poor prognostic factors [2, 3]. DNA methylation
profiling has recently identified nine distinct molecular sub-
groups which have been shown to outperform routine histo-
pathological grading in prognostication [7]. Of these groups,
supratentorial (ST) Grade II/III EPNs harboring fusions of the
RELA gene (ST-EPN-RELA subgroup) and posterior fossa

(PF) Grade II/III EPNs with a CpG island methylator pheno-
type (PF-EPN-A subgroup), both of which predominate in the
pediatric age group, are associated with dismal prognosis
[7–9]. The poor clinical outcomes despite advances in neuro-
surgical techniques, ineffectiveness of chemotherapy, and the
toxic effects of radiotherapy in children, have created an ur-
gent need to identify newer predictive biomarkers with poten-
tial for therapeutic targeting in these two subgroups [10].

Epithelial to mesenchymal transition (EMT) is a trans-
differentiation cellular process required for normal cellular
homeostasis during development. In cancers, high expression
of canonical regulators of EMT such as SNAI1/Snail is asso-
ciated with tumor invasion and metastasis, augmented
stemness and chemo-resistance, and increased proliferation
[11–13]. SNAI1 is a member of the Snail zinc-finger family
and acts as a transcriptional repressor for E-cadherin and is
one of the key regulators of cell adhesion, migration and EMT
[13]. In a previous study, we identified and established the
occurrence of an EMT-phenotype in EPNs and showed that
EMT-transcription factors including Snail are most upregulat-
ed in the aggressive RELA-fusion positive ST EPNs and PF
EPNs [14]. While a preliminary experiment yielded
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compelling evidence that Snail is a direct target of C11orf95-
RELA fusion driven NF-KB pathway aberrant signaling in ST-
EPN-RELA EPNs [15], the exact mechanisms by which Snail
expression is upregulated in PF EPNs is not known.

Nearly 70–90% of RNA transcribed from genomic DNA
do not code for proteins. Excluding the well characterized
microRNAs, ribosomal-RNAs and transfer-RNAs, the major-
ity of these non-coding RNA transcripts are longer than 200
nucleotides and are referred to as long non-coding RNAs
(lncRNA) [16]. Originally recognized as key factors in phys-
iological regulation of genomic imprinting and X-inactivation
by means of epigenetic silencing [16–18], recent explorations
into the mechanisms of action of lncRNAs have revealed ver-
satile functions in regulating transcription, translation, and
even, post-translational protein stability [18], They are in-
creasingly being implicated as tumor suppressors/oncogenes
in different malignancies, and significantly altered lncRNA
profiles have been noted in gliomas as well [19, 20].

Mammalian genomes are occupied with thousands of en-
hancers that organize cell-type-specific gene expression pro-
grams [21]. Enhancer RNAs (eRNAs) are a newly identified
subgroup of lncRNAs transcribed by RNA polymerase II
from the domain of these transcription enhancers and are a
major type of cis-regulatory elements in the genome [22].
TRERNA1 (Translation Regulatory Long Non-Coding RNA
1) is one such lncRNA that has been found to regulate the
expression of EMT master-transcription factor SNAI1/Snail
[23]. Transcribed from chromosome 20q13.13 (coordinates
50,040,707- 50,041,629), TRERNA1 appears to function as
an enhancer RNA augmenting the transcriptional activity of
the adjacent SNAI1 gene (chromosome 20q13.13, coordinates
49,982,976-49,988,886) in a cis-dependent manner [17, 21].

The role of TRERNA1 has not been studied previously in
EPNs and its association with EMT phenotype in EPNs is
unknown. In this study, we analyzed the expression level of
TRERNA1 in different clinico-pathological-molecular sub-
groups of EPNs and attempted to decipher its significance in
the pathogenesis of EPNs.

Methods

Sample Collection The study was of retrospective design and
ethically approved by the Institute Ethics Committee (Ref No:
IESC/T-211/05/05/2015) and has been performed in accor-
dance with the ethical standards laid down in the 1964
Declaration of Helsinki and its later amendments. Informed
consent was obtained from all patients prior to their inclusion
in the study. Fresh tumor samples from patients operated in the
Department of Neurosurgery are collected routinely from the
operation theatre at the time of surgery. Portions of resected
tumors are snap-frozen in liquid nitrogen and stored at −80 °C
until use, and the remaining tissue is fixed in 10% buffered

neutral formalin and paraffin-embedded for routine histopa-
thology and immunohistochemistry. Cases diagnosed as
EPNs between 2003 and 2016 were retrieved from the ar-
chives and corresponding Hematoxylin and Eosin (H&E)
stained slides were reviewed for reconfirmation of diagnosis
by two neuropathologists (AN and MCS) according to the
2016 World Health Organization (WHO) classification of
CNS tumors [24]. WHO Grade I subependymomas and
myxopapillary ependymomas were excluded from analysis.
Scrapings of ependymal lining of lateral ventricles obtained
from autopsies conducted in the Department of Forensic
Medicine and normal brain tissues from epilepsy surgery per-
formed in Department of Neurosurgery were used as normal
controls in gene expression analysis.

RNA Isolation and cDNA Conversion Total RNAwas isolated
using mirVana™ miRNA Isolation Kit(M/S Ambion, Life
Technologies, USA) as per manufacturer’s protocol. One μg
of total RNAwas reverse transcribed using Superscript VILO
cDNA Synthesis Kit (M/S Invitrogen, Life Technologies,
USA).

Gene Expression Analysis for TRERNA1Quantitative Realtime
PCR (qPCR) was performed using Syber-green with Agilent
Mx3005P system (Agilent Technologies, USA). The differ-
ences in expression between patients and controls (delta Ct)
were calculated using the comparative method and the level of
TRERNA1 fold change was calculated using 2 −ΔΔCt meth-
od, using ACTB and GAPDH as housekeeping genes. The
primer sequences for the transcripts analyzed are provided in
Supplementary Table-1.

Immunohistochemistry for MIB1 Immunohistochemical stud-
ies were performed on 4-μ-thick formalin-fixed, paraffin-
embedded tumor sections using antibodies directed against
MIB-1 (Dako, Denmark; 1:200). Labeled streptavidin biotin
kit (Universal) was used as a detection system (Dako,
Denmark). MIB-1 labeling index (L1) was calculated as per-
centage after counting 1000 tumor cell nuclei in different hot
spots. Labeling index of more than 10% tumor cell nuclei was
considered high [2].

Detection of C11orf95-RELA Fusions in Supratentorial EPNs
qRT-PCR for the two most common C11orf95-RELA fusion
transcripts were performed as previously described [9].

Clinico-Pathologic-Molecular Subgrouping of EPNsMolecular
subgrouping of EPNs was attempted based on the classifica-
tion proposed by Pajtler KW, et al. [7]. Due to non-availability
of methylation profiling, we attempted to classify EPNs into
proxy molecular subgroups. Supratentorial grade II/III EPNs
with C11orf95-RELA fusions were classified as ‘ST-RELA+’,
while the cases without fusion were grouped as ‘ST-RELA-’.
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Pediatric posterior fossa EPNs (≤18 years at diagnosis) were
categorized as PF-A while adult posterior fossa EPNs
(>18 years at diagnosis) were categorized as ‘PF-B’. Spinal
Grade II/III EPNs were grouped as ‘SP’.

Survival and Statistical Analysis

Graph Pad Prism version 5.0 for Windows and SPSS version
11.5 for Windows was used for statistical, box plot and
Kaplan–Meier curve analysis. P-values less than 0.05 were
considered significant. For representation of p value in graphs,
following symbols were used: p = <0.05–0.01-*, p = 0.01–
0.001-**, p = <0.001-***.

Results

A total of 75 cases of Grade II and III EPNs were included in
the study. The clinicopathological features are summarized in
Table 1. Overall median age at diagnosis was 11.5 years
(range 1–62 years) with male:female ratio of 2.2:1. The tu-
mors were located in the supratentorium (48%), posterior fos-
sa (41.3%) and spinal cord (10.6%). Type 1 and 2 C11orf95-
RELA fusion transcripts were identified in 72.2% of
supratentorial EPNs (ST-RELA+). This subgroup showed a
preponderance of pediatric (80%) age group, male gender
(68%) and grade III (76%) histology. Survival data was avail-
able for 62.2% (47/75) of the patients with median follow-up
duration of 17 months (range 1–72 months).

Gene Expression Analysis for TRERNA1

The gene expression of TRERNA1 was significantly upregu-
lated in intracranial subgroups of EPN, i.e. ST-RELA+, ST-
RELA-, PF-A and PF-B as compared to normal brain

(p < 0.05) (Fig. 1a), while there was no significant change in
TRERNA1 expression in SP subgroup. The highest median
fold change of TRERNA1 expression was observed in PF-A
subgroup and this was significantly higher than all other sub-
groups i.e. ST-RELA+ (p = 0.011), ST-RELA- (p = 0.005), PF-
B (p = <0.001) and SP (p = <0.001).

Correlation of TRERNA1 with Proliferation Marker
(MIB1)

High expression levels of TRERNA1was found to be associ-
ated with high MIB-1 labelling index >10 (p = 0.034)
(Fig. 2a).

Survival Analysis

Intracranial subgroups showed significantly shorter progres-
sion free survival as compared to spinal EPNs (p = 0.031)
(Fig. 2b). For survival analysis of TRERNA1 in EPNs, the
median was used as a cut-off value to divide the samples in
two groups: high expression (with expression more than the
median cut-off) and low expression (with expression less than
the median cut-off). The group with high expression of
TRERNA1 in EPNs was found to be linked with shorter pro-
gression free survival on univariate analysis (p = 0.002) (Fig.
2c). A multivariate analysis could not be performed due to
small number of events.

Discussion

Many previous studies including ours [14], have reported en-
richment of EMT related signaling pathways such as Notch
[25], Interleukin-6/STAT3 [26], PI3K-AKT [27], NF-kB [26,
28] and pathways related to extracellular matrix, hypoxia and
chemotaxis [8] in pediatric posterior fossa ependymomas;

Table 1 Clinicopathological
details of selected cases Variable Supratentorial (n = 36) Infratentorial (n = 31) Spinal (n = 8)

ST-RELA+ ST-RELA - PF-A PF-B SP

Total number of cases n = 26 n = 10 n = 19 n = 12 n = 8

Age

Median (Range) 10 (1–45) 14.5(2–59) 9(2–18) 34 (21–62) 22.5 (9–55)

Pediatrics (<18 years) 22 (80%) 7 (70%) 19 (100%) 0 3 (37.5%)

Adults (>18 years) 4 (20%) 3 (30%) 0 12 (100%) 5 (62.5%)

Gender

Male 18 (68%) 5 (50%) 15 (78.9%) 6 (50%) 7 (87.5%)

Female 8 (32%) 5 (50%) 4 (21%) 6 (50%) 1 (12.5%)

Grade

Grade II 5 (24%) 3 (30%) 5 (26.3%) 7 (58.3%) 6 (75%)

Grade III 21 (76%) 7 (70%) 14 (73.6%) 5 (41.6%) 2 (25%)
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however the mechanisms of upregulation have remained
largely unexplored. In the present study, we assessed the ex-
pression of TRERNA1, across different clinico-pathologic-
molecular subgroups of EPN. By gene expression analysis,
we found upregulated expression of TRERNA1 in all EPNs
with maximal overexpression in pediatric PF EPNs.
TRERNA1 expression significantly correlated with high pro-
liferative indices and a shorter progression free survival on
univariate analysis. Our data suggests a significant role for
TRERNA1 in pediatric posterior fossa EPNs and possibly
playing a role in dysregulation of Snail expression and resul-
tant augmentation of the EMT phenotype.

The role of many lncRNAs in augmenting [20, 29–35] or
reversing EMT-phenotype [35, 36] has been well studied in
various solid epithelial malignancies [18, 29–35], gliomas
[20] and melanomas [30]. In these studies, expression levels
of lncRNAs correlated with higher clinical stage, distant me-
tastases or tumor aggressiveness [30–32], and in many of
them, functional lncRNA knockdown assays showed signifi-
cant alteration in the proliferation, invasiveness and migratory
capabilities of tumor cells in-vitro [20, 29–33] and in-vivo
[30–33]. Altered protein expression levels of EMT-related
factors such as E-cadherin, Vimentin, and N-cadherin
[29–31, 35], and/or dysregulation of EMT-related pathways

Fig. 1 Box plot for gene
expression analysis of TRERNA1
using qRT-PCR data in relation to
molecular subgroups: Realtime
Quantitative PCR analysis for
TRERNA1 expression as com-
pared to (a) controls and (b) mo-
lecular subgroups with individual
p values depicted in Table (c) . For
representation of p value in
graphs, following symbols were
used: p = <0.05–0.01-*, p = 0.01–
0.001-**, p = <0.001-***

Fig. 2 Association of TRERNA1
expression with proliferation
marker (MIB1) and survival:
Scatter plots showing upregula-
tion of TRERNA1 expression in
high MIB1 LI (>10) as compared
to low MIB1 LI (<10) (a),
Univariate progression free sur-
vival analysis for molecular sub-
groups of ependymomas (b) and
TRERNA1 expression (c)

P. B. Malgulwar et al.1978



including JAK-STAT3 [29], EZH2-Notch1 [33], TGF-Beta
[36], WNT/Beta-catenin [36] and NF-KB [36] were also dem-
onstrated in some studies, strengthening the evidence for the
role of lncRNAs in EMT. However, knowledge of the exact
mechanisms by which these lncRNAs mediate changes in
EMT phenotype is limited [18]. Some lncRNAs appear to
directly interact with and silence specific miRNAs with antag-
onistic functions [35]. HOTAIR and MEG8 appear to bind
with EZH2 and recruit PRC2 to anti-EMT genes, including
those encoding miRNAs, leading to H3K27 tri-methylation
and gene silencing [31].

A role for TRERNA1 in cancer has been previously docu-
mented in breast cancer [37], colorectal cancer [37], gastric
cancer [23] and chronic lymphocytic leukemia [38], with ours
being the first study documenting a possible pathogenic role
in ependymomas. In an analysis of 12 paired primary and
metastatic tumors of breast carcinomas, Gumireddy et al.
found markedly higher TRERNA1 levels in the metastatic tu-
mor samples. They found that enforced expression of
TRERNA1 in non-invasive and non-metastatic breast cancer
cell lines increased cell migration and invasion through
matrigel, while knockdown suppressed the same. They also
demonstrated that silencing of TRERNA1 using siRNA re-
duced the incidence of lung metastases in mice transplanted
with breast cancer cells [37]. Similar results were obtained by
Wu et al. in their study of 48 gastric carcinoma samples and
cell lines [23]. Originally discovered by Orom et al. as an
enhancer RNA for the adjacent SNAI1 gene wherein silencing
of TRERNA1 (ncRNA-a7) resulted in specific reduction in
Snail levels, reduction in cell migration in vitro, and upregu-
lation of snail target genes in A549 lung cancer cell lines,
TRERNA1 was one of the first lncRNAs discovered to aug-
ment transcription of adjacent protein coding genes in a cis-
dependant manner, likely by virtue of sequence or structural
homology [17]. Further, Wu et al. also demonstrated in gastric
cancer cell lines that TRERNA1 can recruit EZH2 and directly
cause epigenetic silencing of CDH1 (E-cadherin) gene pro-
moter by PRC2 mediated histone H3K27 trimethylation [23].
On the other hand, Gumireddy et al. found that alteration of
TRERNA1 expression levels did not have any effect on Snail
mRNA levels in breast cancer cell lines, but rather enhanced
EMT–phenotype by effecting polysomal redistribution of E-
cadherin mRNA, reducing the translation efficiency and de-
creased E-cadherin protein levels [37]. Our study reports over-
expression of TRERNA1 levels in ependymomas, and, further
opens window for in-vitro and in-vivo studies.

In the present study, we also observed an association of
TRERNA1with higher proliferative indices and poor prognos-
tic outcome on univariate analysis. While activation of Snail-
mediated EMT can lead to increased proliferation and poor
outcome by itself, TRERNA1 may be capable of effects inde-
pendent of Snail. In breast and gastric cancer cell lines,
TRERNA1 has been found to be present in the nuclear and

cytoplasmic compartments suggesting that it may utilize dif-
ferent mechanisms of gene regulation targeting transcription
and translation within the same tumor cells [37]. Interestingly,
overexpression of TRERNA1 has also been implicated in
chemo-resistance in a recent study where Miller et al. in their
analysis of over 30,000 lncRNAs in 144 patients with chronic
lymphocytic leukemia, identified that TRERNA1 expressing
CLL cell lines showed less evidence of DNA damage when
exposed to fludarabine as compared to those lacking
TRERNA1, thus, leading to increased chemo-résistance and
shorter progression free survival in patients receiving chemo-
therapy [38]. However, this study does not delve into the exact
mechanisms by which TRERNA1 executes this effect.

Conclusion

Despite the rapidly expanding knowledge on lncRNA biolo-
gy, the underlying mechanisms by which lncRNA contributes
to carcinogenesis and progression of cancer are still not clear.
While some light has been shed on the roles of TRERNA1 in
transcription and translation processes [15, 21, 35], the target
genes/mRNAs may be different in EPNs. In this context, the
present study requires further extensive functional in-vivo ex-
periments to confirm the interaction between TRERNA1 and
Snail. This would help to confirm the prognostic relevance
and assess the implications of therapeutic targeting of either
of these molecules.
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