LETTER TO THE EDITOR

Transforming Growth Factor Beta 2 Inhibits Growth and Proliferation Potential of Smad4 and p53 Mutated Human Colon Adenocarcinoma Cells

Ramamoorthi Ganesan¹ · Nageswaran Sivalingam¹

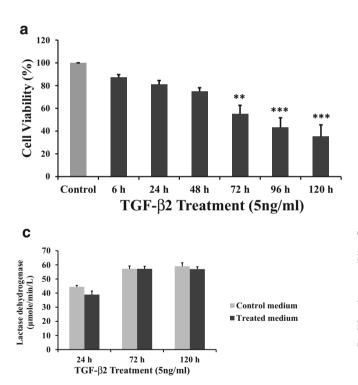
Received: 19 January 2017 / Accepted: 28 May 2018 / Published online: 8 June 2019 ${\rm (}\odot$ Arányi Lajos Foundation 2018

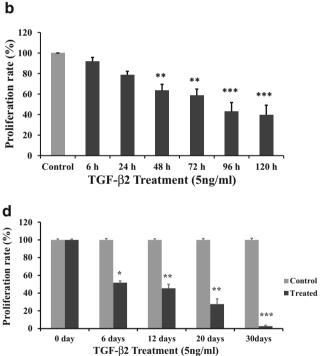
To the Editor

Colon cancer is the most frequently diagnosed cancer and the second leading contributors of cancer related deaths in the United States [1]. The American cancer society estimated that colon cancer causes about 49,190 deaths in 2016 [2]. Although current therapeutics have proved to be clinically favourable for patients who were diagnosed at early stages, development of multi-drug resistance and various side effects remains the potential obstacle for advanced stages of colon cancer [3]. Recent data suggests that the 5 year survival rate for advanced stage colon cancer is about 5% with increased mortality rate of more than 663,000 deaths annually worldwide [2, 3]. Molecular evidence confirmed that transforming growth factor beta (TGF- β) plays a crucial role in the metastatic progression of colon cancer and multi-drug resistance [4].

TGF- β regulates the expression of a plethora of genes involved in fundamental cellular processes such as cell proliferation, differentiation, apoptosis, and immune response. Currently three isoforms are identified in mammals including TGF- β 1, TGF- β 2 and TGF- β 3 [5]. TGF- β exerts its effects by trans-signaling through ubiquitously expressed TGF- β receptors (T β RI and T β RII) at the cell surface. Following interaction with TGF- β , TGF- β receptors initiates Smad2/3/4 complex formation which subsequently translocates into the nucleus to regulate the expression of TGF- β responsive genes [6, 7]. TGF- β exhibits a dual role in colon cancer, initially it acts as a tumor suppressor, and however at the advanced stage it promotes cell proliferation, migration and metastasis [8]. The strongest evidences have suggested that alteration of TGF- β signaling pathway may contribute to the colon cancer progression [8, 9]. In addition, evidence have suggested that loss of Smad4 and p53 functions are important for the loss of TGF- β mediated tumor suppressor role in colon cancer [9, 10]. Furthermore, TGF- β has been shown to activate Smad independent extracellular signal-regulated kinases (ERK) pathway which are important for its pro-oncogenic activities [10]. Collectively, pharmacological inhibition of TGF- β mediated signaling cascade has emerged as one of the potential target for advanced colon cancer patients.

Previous studies have shown that the expression of TGF- β 1 is upregulated in the early stages of colon cancer and inhibited proliferation and induced apoptosis [11]. However, in late stages of colon cancer, TGF- β 1 is often overexpressed and found that the increased expression of TGF- β 1 correlated with invasion and metastasis [12, 13]. Moreover, in advanced stages of colon cancer an increased expression of TGF-B2 was observed which results in worsening of the disease [14]. In addition, one recent study has found that TGF-B1 and TGF-B2 increases the invasive and migration potential of colon cancer cells [15]. Taken together, TGF- β 1 and TGF- β 2 plays a crucial role in colon cancer invasion and metastasis. However, the effect of TGF- β 2 on the proliferation of Smad4 and p53 mutated colon adenocarcinoma cells still remains elusive. We analyzed the effect of TGF- β 2 on the proliferation potential of Smad4 and p53 mutated human colon adenocarcinoma cell line HT-29.


In this study, we used HT-29 human colon adenocarcinoma cells which express mutated form of Smad4 and p53 proteins, were treated with 5 ng/ml of TGF- β 2 and cellular viability and proliferation potential were assessed


Nageswaran Sivalingam nageswaran.s@ktr.srmuniv.ac.in

¹ Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India

by trypan blue exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrrazolium bromide (MTT) assay as described previously [16]. After, detection of the effect of TGF- β 2 on the cell viability and proliferation potential of HT-29 cells, lactate dehydrogenase (LDH) cell cytotoxicity assay was performed. On the trypan blue exclusion assay, we observed that TGF- β 2 significantly inhibited the cell viability of HT-29 cells in a timedependent manner. In addition, 57 to 65% reduction in cell viability was obtained at 96 and 120 h of TGF- β 2 treatment (Fig. 1a). The anti-proliferative effect of TGF- β 2 on HT-29 cells was detected by MTT assay and found that 58 to 61% reduction in cell proliferation of HT-29 cells was observed at 96 and 120 h of TGF- β 2 treatment (Fig. 1b).

In addition, we did not observe any significant difference on the level of LDH release in the medium of TGF- β 2 treated HT-29 cells when compared with untreated cells. This results confirmed that TGF-B2 did not showed cytotoxic effects to the HT-29 cells (Fig. 1c). We finally repeated MTT assay to further assess the time period at which TGF- β 2 treatment exhibits maximal inhibitory effect on the cell proliferation of HT-29 cells. Interestingly, 73 to 98% reduction in the cell proliferation was observed upon TGF-B2 treatment for 20 and 30 days (Fig. 1d). In the present study, we report that TGF-B2 inhibited cell viability and proliferation potential of Smad4 and p53 mutated human colon adenocarcinoma cell line HT-29. In summary, our data indicates that continuous TGF-B2 treatment displays a tumor suppressor effect against Smad4 and p53 mutated colon adenocarcinoma. However, additional experimental studies at the molecular level are needed to further verify these observations. Present study may provide a strong foundation for further studies on the role of TGF-\beta2 in colon adenocarcinoma.

Fig. 1 Transforming growth factor beta (TGF- β) 2 inhibits cell viability and proliferation of HT-29 human colon adenocarcinoma cells. **a** Effect of TGF- β 2 on the viability of HT-29 cells determined by trypan blue exclusion assay. **b** Effect of TGF- β 2 on the proliferation of HT-29 cells detected by MTT assay. **c** Cytotoxic effects of TGF- β 2 on HT-29 cells was detected by LDH cytotoxicity assay. **d** MTT assay showed maximal

inhibitory effect of TGF- β 2 on the proliferation potential of HT-29 cells. n = 6 experiments were performed. All the data were presented as the mean \pm SEM. *p < 0.05, **p < 0.001 and ***p < 0.001, compared with untreated control group, one-way ANOVA with the Bonferroni multiple comparison post-test

Acknowledgements The authors would like to acknowledge the Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur- 603203, Tamilnadu, India for the financial support.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

- Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics 2014. CA Cancer J Clin 64:9–29
- Siegel RL, Miller KD, Jemal A (2016) Cancer statistics 2016. CA Cancer J Clin 66:7–30
- 3. Wang L, Xue M, Chung DC (2016) c-Myc is regulated by HIF-2 α in chronic hypoxia and influences sensitivity to 5-FU in colon cancer. Oncotarget 7:78910–78917
- Principe DR, DeCant B, Staudacher J et al (2015) Loss of TGFβ signaling promotes colon cancer progression and tumor-associated inflammation. Oncotarget 8:3826–3839
- 5. Meulmeester E, Dijke P (2011) The dynamic roles of TGF- β in cancer. J Pathol 223:206–219
- Connolly EC, Freimuth J, Akhurst RJ (2012) Complexities of TGFβ targeted cancer therapy. Int J Biol Sci 8:964–978

- Derynck R, Zhang YE (2003) Smad-dependent and Smadindependent pathways in TGF-beta family signalling. Nature 425: 577–584
- Ramamoorthi G, Sivalingam N (2014) Molecular mechanism of TGF-β signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy. Tumour Biol 35:7295–7305
- Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG (2012) TGF-beta signalling in colon carcinogenesis. Cancer Lett 314:1–7
- Zhang B, Halder SK, Kashikar ND et al (2010) Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 138: 969–980
- Kardamakis D, Ravazoula P, Zolota V, Salakou S, Tepetes K, Kalogeropoulou C (2004) The potential role of TGFβ1, TGFβ2 and TGFβ3 protein expression in colorectal carcinomas. Strahlenther Onkol 18:201–208
- Gulubova M, Manolova I, Ananiev J, Julianov A, Yovchev Y, Peeva K (2010) Role of TGF-β1, its receptor TGFβRII, and Smad proteins in the progression of colorectal cancer. Int J Color Dis 25:591–599
- Han S, Bui NT, Ho MT, Kim YM, Cho M, Shin DB (2016) Dexamethasone inhibits TGF-β1-induced cell migration by regulating the ERK and AKT pathways in human colon cancer cells via CYR61. Cancer Res Treat 48:1141–1153
- 14. Massagué J (2008) TGF beta in Cancer. Cell 134:215-230
- Chen S, Zhu J, Zuo S et al (2015) 1,25(OH)2D3 attenuates TGFβ1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells. Biochem Biophys Res Commun 468:130–135
- Watson JL, Hill R, Yaffe PB et al (2010) Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells. Cancer Lett 297:1–8