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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis and recur-
rence. Cancer stem cells (CSCs), which are pluripotent, self-renewable, and capable of forming tumors, contribute to PDAC
initiation and metastasis and are responsible for resistance to chemotherapy and radiation. Three types of experimental methods
are commonly used to identify CSCs: CSC-specific marker detection, a sphere-formation assay that reveals cell proliferation
under non-adherent conditions, and detection of side-population (SP) cells that possess high intracellular-to-extracellular pump
functions. Several CSC-specific markers have been reported in PDACs, including CD133, CD24, CD44, CXCR4, EpCAM,
ABCG2, c-Met, ALDH-1, and nestin. There remains controversy regarding which markers are specific to PDAC CSCs and
which are expressed alone or in combination in CSCs. Examining characteristics of isolated CSCs and discovering CSC-specific
treatment options are important to improve the prognosis of PDAC cases. This review summarizes CSC-detection methods for
PDAC, including CSC-marker detection, the sphere-formation assay, and detection of SP cells.
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Introduction

Pancreatic cancer is among the most lethal types of malignant
tumor, as ~338,000 people were diagnosed with the disease
worldwide in 2012 [1] and with almost the same number
dying as a result of it. Pancreatic ductal adenocarcinoma
(PDAC), a major histological subtype comprising 90% of all

pancreatic cancer, has a high mortality rate due to its aggres-
sive growth and high metastatic rate [2]. Surgery offers the
only possible cure for PDAC; however, 80% of PDAC pa-
tients are inoperable at diagnosis, and no curative treatment is
available for advanced PDAC. This aggressiveness leads to an
extremely poor prognosis, with the most recent overall surviv-
al rate for pancreatic cancer at 8% [3]. Even after surgery, the
5-year survival rate for PDAC remains low (15–20%), with
most patients dying because of metastatic disease and local
recurrence [4]. By the year 2030, pancreatic cancer is expected
to surpass all gastrointestinal cancers to become the second-
leading cause of cancer-related death in the United States,
trailing only lung cancer [5].

The development of early detection methods and effective
therapy for advanced PDAC patients is necessary to improve
the poor prognosis. PDAC does not exhibit any characteristic
symptoms in its early stages, and serum levels of CA19–9 and
carcinoembryonic antigen are not useful for early diagnosis.
Currently, chemotherapies or chemoradiotherapies are used to
reduce tumor size and improve the prognosis of advanced
PDAC patients; however, these treatments are not capable of
fully eradicating PDAC cells.

The classical model of carcinogenesis can be described as
Bstochastic^, where any cell in an organ, such as the pancreas,
can be transformed by mutations [6]. This model assumes that
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tumors are biologically homogeneous. All or most cells in a
fully developed PDAC are equally malignant, and a sto-
chastic model implies that strategies focused on curing pan-
creatic cancer require the killing of all malignant cells.
However, a recent genome-sequencing study found signif-
icant variability between individual PDACs and between
primary and metastatic PDAC lesions [7]. A small number
of cells possess stem-cell-like characteristics in various
cancers, with such cells referred to as cancer stem cells
(CSCs) [8–10]. A CSC is defined as Ba cell within a tumor
that possesses the capacity to self-renew and to cause the
heterogeneous lineages of cancer cells that comprise the
tumor^ according to the 2006 symposium of the American
Association of Cancer Research [11]. CSCs are also resistant
to chemotherapy and radiation and are considered responsible
for tumor recurrence after the completion of adjuvant therapy.
In this review, we summarize the characteristics of and detec-
tion methods for pancreatic CSCs and the possibility of CSC-
targeting therapy for PDAC.

Characterization of pancreatic CSCs

PDAC arises through multiple steps that include pancreatic
intraepithelial neoplasias (PanINs) and culminate in invasive
cancer [12]. Reports of CSCs in premalignant pancreatic le-
sions are limited.We previously reported that cells positive for
the CSC markers cluster of differentiation (CD)24, CD44, C-
X-C chemokine receptor type 4 (CXCR4), epithelial specific
antigen (ESA), and nestin were enriched at higher PanIN
grades, although CD133 did not increase with the malignancy
grade [13].

The cell origin of pancreatic CSCs remains unknown [9].
Hypothesized sources include: 1) tissue stem cells or progen-
itor cells, 2) stem cells derived from bone marrow, and 3) de-
differentiated cells resulting from genetic mutation. Pathways,
such as Notch, Wnt/β-catenin, Sonic hedgehog (Shh), and B
cell-specific Moloney murine leukemia virus-integration site
(BMI)-1, might contribute to the development and progres-
sion of PDACs and to the biology of pancreatic CSCs [10];
however, specific genetic alterations or biomarkers for pan-
creatic CSCs within the population of pancreatic cancer cells
remain to be elucidated. Several studies of genetically
engineered mice suggested that pancreatic acinar cells,
centroacinar cells [14], or acinar-ductal metaplasia [15] might
represent the Bcells of origin^ in pancreatic cancer,
whereas another study suggested that some pancreatic
epithelial cells characterized by the expression of c-
Met+CD133+CD34+CD45−Ter119− and Pdx1 are related to
pancreatic carcinogenesis [16, 17]. Additionally, the effects
of niche on normal stem cell function are reportedly critical
[18], and tumor-associated stromal fibroblasts in PDAC reg-
ulate tumor-cell growth [19].

Identification and isolation of pancreatic CSCs

Three major methods are employed to identify CSCs from
various organs: CSC-specific marker detection, the sphere-
formation assay, and detection of side-population (SP) cells.
In PDAC-tissue sections, CSCs are detected using CSC-
specific markers and immunohistochemical or immunofluo-
rescent staining. Pancreatic CSCs exhibit specific cell-
membrane markers, including CD133, CD44, CD24,
CXCR4, ATP-binding cassette sub-family G member 2
(ABCG2), and epithelial-cell-adhesion molecule (EpCAM;
also known as ESA) [20–24]; however, the roles of these
markers have not been studied in detail. We previously report-
ed that nestin, an exocrine progenitor-cell marker in the pan-
creas [25], plays important roles in the migration, invasion,
and metastasis of PDAC cells [26–29]. In cultured PDAC
cells, CSC-marker-positive cells and SP cells, which contain
abundant CSCs, have been detected and isolated using flow
cytometry. In the sphere-formation assay, when PDACs are
cultured in ultra-low attachment dishes, the CSCs form float-
ing colonies. According to studies using these detection
methods, CSCs account for only a small fraction in PDAC
tissues or PDAC cell lines (Table 1).

CSC markers

Several cell-surface markers, including CD133 [28, 30],
CXCR4 [23, 28], EpCAM, CD24 [21], CD44 [31, 32],
ABCG2 [30], and c-Met [33], have been used for flow cyto-
metric sorting of pancreatic CSCs. However, no unique mark-
er has been identified for the isolation of CSCs from different
tumor types; therefore, a combination of several markers
might increase the purity of isolated CSCs [34, 35].

Putative pancreatic CSCs were first defined by the simul-
taneous expression of CD44, CD24, and EpCAM [32]. Li et
al. [32] demonstrated that CD44+CD24+EpCAM+ cells,
which constituted only 0.2 to 0.8% of tumor cells, exhibited
a 100-fold increase in tumorigenic potential as compared with
CD44−CD24−EpCAM− cells. The CD44+CD24+EpCAM+

subpopulation exhibited features typically observed in adult
stem cells, including self-renewal, generation of differentiated
progeny, and activated developmental signaling pathways,
such as the Shh pa thway [32 ] . The re fo re , t he
CD44+CD24+EpCAM+ subpopulation contains putative pan-
creatic CSCs, which fulfil the two functional criteria of self-
renewal and differentiation into the full spectrum of tumor-cell
progeny [36]. Because CD44 defends against reactive oxygen
species [37], this might suggest a mechanism for correlation of
CD44 with CSCs.

CD133, also known as prominin-1, was first discovered as
a marker of normal hematopoietic stem cells [38] and later
found to distinguish CSCs from a variety of tissues, including
breast [39], brain [40], liver [41], colon [42, 43], prostate [44],
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and pancreatic tumors [28, 45, 46]. CD133 is a glycosylated
protein with five transmembrane domains and a ganglioside-
binding motif present in the extracellular domain [47], with
tyrosine phosphorylation capable of occurring in the cytoplas-
mic domain [48]. The possibility that CD133/Src signaling
provides a regulatory switch from stemness properties to in-
duce the epithelial-mesenchymal transition (EMT) has been
reported [49]. In primary PDACs and PDAC cell lines,
CD133 expression reflects high proliferation potential and
tumorigenesis with chemotherapeutic resistance.
Additionally the CD133+ subpopulation of pancreatic cancers
exhibits decreased apoptosis when treated with gemcitabine
[28], and hypoxia induces tumor aggressiveness, with this
process associated with the expansion of CD133+ pancreatic
cancer cells in a predominantly hypoxia-inducible factor-1α-
dependent manner [50]. Moreover, CD133, nestin, and SRY-
box-2 expression are elevated in CSCs under hypoxic condi-
tions, and these cells also exhibit increased proliferation rates
and self-renewal potential [51]. Hermann et al. [28] defined
the CD133+ subpopulation as CSCs from 11 primary human
PDAC samples and PDAC cell lines, with this subpopulation
capable of reconstituting pancreatic tumor growth with full
tumor differentiation, similar to the CD44+CD24+EpCAM+

subpopulation [28]. Additionally, an overlap of 10 to 40%
between CD44+CD24+EpCAM+ and CD133+ PDAC cells
has been reported [28]. Because of the different glycosylation

patterns of CD133 in CSCs and differentiated tumor cells,
only AC133 (a mouse monoclonal IgG antibody that recog-
nizes epitope 1 of CD133) is reportedly capable of identifying
CSCs [52].

CXCR4 is implicated in the invasion and metastasis of
pancreatic cancer [53], with its expression initiated at the early
stages of pancreatic carcinogenesis in PanINs and maintained
during progression to invasive cancers and metastatic dis-
eases. CXCR4-expressing cells also appear to mediate pan-
creatic cancer metastasis [28]. Regarding CD133, Hermann et
a l . [ 28 ] iden t i f i ed a d i s t i nc t subpopu la t ion o f
CD133+CXCR4+ CSCs that determine the metastatic pheno-
type of the individual pancreatic tumor. Stromal-cell-derived
factor (SDF)-1, also known as CXCL12, is a specific ligand of
the CXCR4 and induces the migration of CD133+ cancer cells
in vitro. In vivo experiments using sorted CD133+CXCR4+

cells demonstrated that co-expression of this receptor is essen-
tial for the generation of liver metastasis, indicating that
targeting the SDF-1/CXCR4 axis might be a useful strategy
for inhibiting PDAC metastasis.

Some other distinctive markers have been investigated, in-
cluding aldehyde dehydrogenase-1 (ALDH-1) associatedwith
tumorigenic cells in PDAC [24, 54–56]. ALDH+ cells, detect-
ed using the Aldefluor assay, are also enriched for pancreatic
tumor-initiating cells [56]. On the other hand, comprehensive
investigations suggest abundant expression of ALDH-1 in
normal pancreatic tissues, which would disqualify ALDH-1
as a suitable marker for CSCs in humans. Additionally, c-Met,
the hepatocyte growth-factor receptor, plays important roles in
pancreatic CSC biology [24], with expression of c-Met capa-
ble of identifying pancreatic CSCs along with high levels of
CD44.

Recent studies show that doublecortin-like kinase (DclK)1
and leucine-rich repeat-containing G-protein-coupled receptor
(Lgr)5 are putative novel CSC markers for pancreatic cancer
[57]. DclK1 regulates several key oncogenes, including c-
MYC, KRAS, and Notch, and EMT. DclK1 is expressed in
the isolated normal pancreatic duct and islet cells, as well as in
PanINs and PDAC [58]. DclK1-expressing normal pancreatic
cells can possess progenitor-like function [59], and invasive
and pre-invasive pancreatic cancer might depend upon
DclK1-expressing cells with CSC capabilities. Lgr5 is the
Wnt-target gene that marks Wnt-driven, actively diving stem
cells [60]. Lgr5 is expressed in resected PDAC tissues [61],
and patients harboring high levels of Lgr5-positive cells ex-
hibit shorter median survival rates [62].

The clinicopathological roles of these CSC markers in
PDAC tissues remain controversial. We performed an immu-
nohistochemical analysis of the localization of CSC markers
using tissues from 105 patients with conventional PDAC [13].
CD24+, CD44+, CXCR4+, ESA-positive, and nestin-positive
cells were detected in the following tissues listed in order of
increasing percentage: normal ducts < low-grade PanINs <

Table 1 Expression of CSC markers in human pancreatic ductal
adenocarcinoma

CSC markers IHC (%) FCM (%) Reference

ABCG2 0.4–7.33 46

ALDH 16.2 74

ALDH1 78.9 45

CD24 26 0.071–45.3 32

3–28* 30

57.8–70.1 51

CD24/CD44 2.1–3.5 51

CD44 15.1 46.1–100 32

2–9* 30

5.1–17.5 51

CD44/c-Met 0.5–5* 52

CD44/CD24/EpCAM 0.2–0.8* 30

CD133 14.5 0–1.61 32

1.09–3.21 29

1.98–69.85 46

CXCR4 35.6 0.274–38.2 32

EpCAM /ESA 60.6 1.36–93.7 32

11–70* 30

Nestin 13.5 0.662–11.5 32

IHC: immunohistochemistry, FCM: flow cytometer, * Xenografted hu-
man pancreatic cancer cells
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high-grade PanINs < PDACs. Although CD133 did not in-
crease with the malignancy grade, the expression of most CSC
markers is related to carcinogenesis via the PanIN-to-PDAC
sequence. The expression of CXCR4 and EpCAM is correlat-
ed with a well-differentiated histological type of PDAC, and
venous invasion was positively associated with CD133 and
inversely associated with EpCAM.

Sphere-formation assays

Cells from both normal and cancerous neural tissues have the
ability to form colonies in spherical aggregates under non-
adherent culture conditions, which indicates self-renewal ca-
pability [40]. PDAC cell lines can form spheres (Fig. 1a and
b), and sphere-forming cells possess stem cell abilities
[63–67]. Additionally, sphere-forming cells exhibit high
tumor-formation rates relative to non-sphere-forming cells.
Moreover, CD44+CD24+ fractions from pancreatic tumors
are enriched in sphere-forming cells [66], and nestin, a pan-
creatic CSCmarker, was more highly expressed in the spheres
of three pancreatic cancer cell lines than in non-sphere cells
[68]. Furthermore, pancreatic cancer cells derived from the
metastatic foci of immunodeficient mice formed a greater
number of spheres on low-attachment plates than their prima-
ry tumor counterparts [29]. On the other hand, it is possible
that different culture media alter stemness characteristics, such
as drug efflux ability, in spheres of PDAC cells. A previous
study also reported that sphere-forming ability is not correlat-
ed with drug efflux ability [69].

SP cells

SP cells that can exclude the DNA dye Hoechst 33342 are
considered to possess CSC-like features in several tumors
[69–71]. Olempska et al. [30] demonstrated the existence of
SP cells in PDACs [30]; however, it remains unclear whether

the SP cells within PDACs are enriched for CSCs [72].
Furthermore, and the use of SP cells as CSCs in gastrointesti-
nal cancers (including gastric and colorectal cancers) has gen-
erated conflicting data [73]. Zhou et al. [74] stained the human
PDAC cell line PANC-1 with Hoechst 33342 dye and identi-
fied 2.1 to 8.7% (median 3.3%) of all viable cells as SP cells
[74]. Additionally, SP cells exhibit enhanced capacities for
efflux of gemcitabine and Hoechst 33342 dye, with the
drug-efflux capacity of PANC-1 SP cells leading to a signifi-
cant survival advantage. These results might support the hy-
pothesis that SP cells within tumors use their self-renewal
capacity to help maintain chemotherapy resistant cancer foci.
In a previous study, we detected SP cells in PANC-1 cell
populations from the metastatic tumors of immunodeficient
mice at approximately twice the proportion of their occurrence
in counterpart parental PANC-1 populations [29]. Therefore,
targeting SP cells might diminish drug resistance, reduce me-
tastasis, and improve patient survival.

To analyze SP cells, Hoechst 33342 is added to PDAC
cells, followed by incubation. SP cells and major population
(MP) cells are then separated by flow cytometry [75] (Fig. 2a).
The injection of cells from the SP fraction resulted in a larger
tumor volume than did the injection of the same number of
cells from the MP fraction (Fig. 2b). Moreover, resected sub-
cutaneous tumor tissues derived from SP and MP fractions
exhibited similar histological features after 5 weeks. These
histopathological findings might indicate the differentiation
of CSCs to non-CSCs. A Hoechst 33342 SP assay requires
an ultraviolet laser for maximum excitation, and this laser is
expensive. A DNA-binding dye structurally similar to
Hoechst 33342 andwith an excitation spectrum shifted toward
the violet range (DyeCycle Violet) has recently been used for
SP analysis by flow cytometers equipped with violet laser
diodes [76].

Several types of drug-efflux pumps are present in cancer
cells. In the case of chemoresistance, several cancers

Fig. 1 Sphere of pancreatic
cancer cells, with PANC-1 cells
cultured in an ultra-low-
attachment dish. Phase-contrast
image of the sphere (A). Scanning
electron microscope images of the
sphere were obtained using the
Phenom proX desktop scanning
electron microscope (Phenom-
World BV, Eindhoven,
Netherlands) (B). Original
magnification: 200× (A) and
7000× (B)
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accumulate mutations or genetic changes, mainly in the multi-
drug resistance (MDR)-1 transporter and to a lesser degree the
MDR-3 pump, that increase pump activity, [77]. ABC trans-
porters have also become a target for therapeutic development
in cancer; however, it is considerably less clear whether the
presence of this BSP^ alone is sufficient to identify a CSC [69].

Future perspectives

There are three possible ways to deplete cancers of their CSC
populations: 1) use therapeutic agents to selectively kill CSCs;
2) employ agents that drive CSCs to differentiate, thereby
making them susceptible to standard therapy; and 3) regulate
microenvironments.

One of the most promising approaches to CSC targeting
involves inhibition of stem-cell-associated pathways, includ-
ing those involving Shh, mammalian target of rapamycin

(mTOR), Notch, BMI, and bone morphogenetic protein.
CD133+ PDAC cells exhibit high mTOR-signaling activity
[78], and single-agent therapy with rapamycin alone resulted
in a significant decrease in CD133+ CSCs. Additionally, com-
bined inhibition of the Shh and mTOR pathways by
cyclopamine and rapamycin together with gemcitabine result-
ed in sufficiently efficacious targeting of CSCs. Furthermore,
Shh blockade with cyclopamine led to a decrease in the pop-
ulation of CD133+ CSCs in PDAC cell lines and the reduced
metastatic potential of tumor cells. In conjunction with
gemcitabine and rapamycin, blockage of this pathway leads
to a decrease in overall in vivo tumorigenicity [52, 78].

Recent studies showed that the anti-death receptor 5 (anti-
DR5) antibody drozitumab inhibits the growth of pancreatic
cancer patient xenografts [79]. DR5 is expressed in 75 to
100% of pancreatic CSCs and 25% of bulk tumor cells.
Additionally, the anti-diabetic drug metformin targets pancre-
atic CSCs, but not their differentiated progenies. Metformin
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induces cell cycle arrest in the bulk of the more differentiated
pancreatic cancer cells, but CSCs undergo rapid apoptotic cell
death [80]. A recent report also demonstrated that non-CSCs
were highly glycolytic, but CSCs were dependent upon oxi-
dative metabolism, with very limited metabolic plasticity [81].
Therefore, mitochondrial inhibition by metformin translated
into energy crisis and apoptosis in pancreatic CSCs.
Furthermore, treatment with XL184, a c-Met inhibitor, leads
to the depletion of pancreatic CSCs, decreased tumorsphere-
forming capacity, and in vivo tumorigenicity [33].

Conclusion

Accumulating evidence suggests that a small number of CSCs
exist within the population of PDAC cells. CSCs play key
roles in the malignant behavior of PDAC, with SP cells, the
sphere-formation assay, and CSC markers used to identify
pancreatic CSCs. Analysis of CSC markers in surgical-tissue
specimens is expected to identify reliable prognostic markers
and estimate the effectiveness of anticancer therapy.
Additional clinical and basic research is expected to continue
the development of CSC-targeting therapies for PDAC.
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