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Abstract
p38 protein belongs toMitogen-activated protein kinases family that link extracellular stimuli with intracellular responses participating
in numerous of fundamental cell processes. Persistent activation of STAT3 has been associated with cell proliferation, differentiation
and apoptosis in oral squamous cell carcinoma (OSCC). This study examines the effects of p38 modulation on STAT3 signaling and
cellular activities in OSCC cells and investigates possible correlation of p38 expression with tumor degree of differentiation. Phospho-
p38 immunostaining was performed in 60 OSCC including well, moderately and poorly differentiated tumors. Semiquantitative
analysis was used, by calculating intensity, percentage and combined scores. Protein expression levels of STAT3 (total, tyrosine and
serine phosphorylated), p38 and cyclin D1 were assessed in two OSCC cell lines. p38 inhibition was achieved by pharmacological
agent(SB2023580). Cell proliferation and viability rateswere also evaluated. Phospho-p38 immunoexpressionwas intense in almost all
tumor specimens, nevertheless did not correlate with tumor differentiation. Inhibition of p38 with SB203580 did not appear to affect
tyrosine or serine phosphorylated STAT3 as well as cyclin D1 levels in both cell lines. Moreover, p38 inhibition resulted in mild dose-
dependent decreases in cell growth and viability in both cell lines. p38 is highly expressed in OSCC but does not seem to mediate the
oncogenic STAT3 pathway. However, changes found in proliferation and viabilitymay suggest that p38 functions as potent regulator of
HNSCC.Understanding the complexity of p38 signaling and cross-talk between othermajormolecules, may guide the development of
novel pharmacologic therapies for cancer treatment and prevention.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
sixth most common cancer worldwide, related with a high rate
of morbidity andmortality [1]. HNSCC presents approximate-
ly half million new incidences annually and despite progress
in clinical management, 5-year survival rate remains at a low
of 50% [2]. Several alterations in signaling moleculal path-
ways including EGFR, Ras, NF-κB, STAT, Wnt/b-catenin,

TGF-b, and PI3K-AKT-mTOR are considered significant
HNSCC promoting factors [3]. However, the molecular basis
of the disease in not fully elucidated, hence understanding the
complexity role of these pathways will open new frontiers in
therapeutic approaches.

Signal transducers and activators of transcription (STATs) are
transcription factor proteins that have been widely involved in
oncogenesis [3, 4]. Over the past decade, compelling evidence
suggested that persistent STAT activation by cytokines and
growth factors [5, 6] is present in many types of cancer [7–10].
In recent years, several studies revealed that constitutive activa-
tion of STAT3, a major member of STAT family, strongly asso-
ciated with HNSCC development and progression [11, 12].
Indeed, cell cycle deregulation, enhanced proliferation and pre-
vention of apoptosis, as well as adverse clinical parameters in
HNSCC correlate with aberrant STAT3 activation [7, 11, 12].
Particularly, previous studies considered constitutive STAT3 ac-
tivation as a response to aberrant signaling of upstreampathways,
notably TGF-α/EGFR, in HNSCC [8, 11–13]. Other lines of
evidence demonstrated that STAT3 can be also activated through
various pathways such as 7-nicotinic receptor, interleukin (IL-6,
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IL-10, IL22) receptors, and erythropoietin receptor pathways in
several malignancies including HNSCC [14–16].

Mitogen-activated protein kinases (MAPK) are a family of
evolutionarily conserved kinase modules that link extracellular
stimuli with intracellular responses by serine and/or threonine
phosphorylation of specific downstream target molecules [17].
MAPKs comprise of three major groups, including extracellular
signal-regulated kinases (ERKs), p38 MAPKs, and c-Jun NH2-
terminal kinases (JNKs) [18]. Aberrant MAPK signaling has
been proposed in several types of cancer, including HNSCC
[17–19] where MAPKs are considered downstream targets of
potential oncogenic molecules such as epidermal growth factor
receptor (EGFR), Raf kinase andROS (Reactive oxygen species)
[20–22]. p38 proteins are alsomembers of theMAPK family that
are activated by inflammatory cytokines and a variety of envi-
ronmental stresses [23]. The role of p38 in HNSCC is not
completely understood. While some authors concluded that
p38 promotes proliferation, survival and induces angiogenesis
and lymphangiogenesis [24, 25], others suggested that p38 de-
creases cell proliferation [26] and has antimigrating effects on
oral cancer cells [27]. Hence, it is believed that p38MAPK plays
a dual role in cancer and its regulation depends both on the type
of stimulus and cells [28]. Interestingly, previous studies
attempted to examine the existence of a potential crosstalk be-
tween activation of specific members of the MAPK family and
STAT3 signaling [2, 29–31]. For example, JNKwas suggested to
negatively regulate oncogenic STAT3 constitutive signaling in
OSCC cells [2] while Erk1/2 inhibition resulted in decreases in
p-ser STAT3 and cyclin D1 and increases in p-tyr STAT3 in
OSCC cells [29]. Moreover, Xue et al. described that ERK1/2
and p38 signaling pathways inhibited STAT3 activities in human
lung adenocarcinoma [32]. However, the role of MAPKs and
particularly p38 in cancer and STAT3 regulation is still obscure,
indicating the need to further investigate the molecular mecha-
nisms underlying the potential of this association.

The aim of the present investigation was to evaluate the
frequency and significance of p38 expression and activation,
in oral squamous cell carcinoma (OSCCs) tissue specimens of
various degrees of differentiation. Furthermore, we sought to
assess the effects of p38 modulation on STAT3 expression and
activation (through tyrosine and serine phosphorylation), as
well as on cell proliferation and viability in OSCC cell lines.

Materials and Methods

Materials

The study material comprised sixty OSCC cases, obtained from
established tissue repository of theDepartment of Oral Pathology
and under the auspices of tissue bank protocol approved by the
National and Kapodistrian University of Athens, Greece,

Institutional Review Board. The tumors were classified accord-
ing to Anneroth’s grading system into well (WD), moderate
(MD) and poorly differentiated (PD) (3 groups of 20).

Immunohistochemical Staining Paraffin-embedded tissue sec-
tions of tumor samples were deparaffinized, immersed in eth-
anol 100% and 95%, and heated for antigen retrieval in
0.01 M citrate buffer (C2488, Sigma-Aldrich) for 25 min in
a pressure cooker inside a microwave oven. After dehydration
in hydrogen peroxide, the sections were incubated with pri-
mary antibodies at room temperature for 1 h. The applied
antibody was monoclonal phosphor-p38 (p-p38) (1:200)
(Santa Cruz Bio.inc). To validate the staining in HNSCC sam-
ples, positive controls of Endometrial cancer tissue sections
known to express phosphor-p38 were used.

Standard streptavidin–biotin–peroxidase complex method
was employed to bind to the primary antibody along with
multilink concentrated biotinylated anti-IgG as secondary anti-
body (1:2000, rabbit anti-Human IgG, ThermoFisher Scientific).
Reaction products were visualized by counterstaining with the
3,3 V-diaminobenzidine reagent set (Kirkegaard and Perry
Laboratories, Gaithersburg, MD). Sections were counterstained
with hematoxylin. As a negative control, sections were treated
with PBS, with the omission of the primary antibody.
Additionally, tumors were stained with Harris’ hematoxylin
(Harleco, Kansas City, MO) and eosin (Sigma Chemical Co.)
for microscopic evaluation. Immunostains were reviewed by 3
independent evaluators (NN, GR, IG).

Positive Criterion for Immunohistochemical Staining

The immunopositive staining was evaluated in 5 randomly
selected areas of the tissue section and specific staining in
cancer cells was defined as positive staining. Sections were
scored as positive if cancer cells showed immunopositivity in
the nucleus when observed by all 3 evaluators, independently,
who were blinded to grading of the tissue samples, while
scoring the immunoreactivity. The tissue sections were scored
based on the percentage of immunostained cells as: 0% to
10% =0; 10% to 30% =1; 30% to 50% =2; 50% to 70% = 3;
and 70% to 100% = 4. Sections were also scored on the basis
of staining intensity as negative =0; mild = 1; moderate = 2;
intense = 3. To validate staining intensity in HNSCC samples,
positive controls of previously studied tissues known to ex-
press p-p38 were used and their intensity was classified as
moderate. Lower intensity (light brown) compared to the
brown staining of the positive control was classified as weak,
while higher intensity (dark brown) compared to the positive
control was classified as strong. Finally, a total score was
obtained by adding the score of percentage positivity and
intensity.

Ten non-malignant tissues (with histologically confirmed
normal oral epithelium) were also evaluated for p-p38 proteins
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expression (control). The source of normal tissues was from
adjacent normal epithelium of routinely surgically excised
traumatic fibromas of patients with no smoking or alcohol
consumption habits.

Statistical Analysis The baseline characteristics of patients
were summarized as mean and standard deviation (SD) for
continuous or ordinal data and as absolute (n) and relative
(%) frequency for categorical variables.

The two tailed Fisher’s exact test was performed in order to
evaluate possible differences in the frequency distribution of
clinical and pathologic features of patients between men and
women, as well as in the frequency distribution of cases with
positive and negative IHC staining between the three groups
of tumor differentiation. Comparisons concerning the age of
patients were based on Student’s t-test, while ordinal data were
compared with the use of the Kruskal-Wallis one way analysis
of variance by ranks. Spearman’s rank correlation coefficient
rho (r) was calculated for the evaluation of possible correla-
tions between the ranks of the various p-p38 IHC scores under
study with the progression of tumor differentiation.

Cell Lines and Cell Culture Experiments were performed
using established cell lines of human OSCC (SCC9 and
SCC25), which were obtained from the American Type
Culture Collection (Manassas, VA, USA). Cells were cul-
tured in a 1:1 mixture of Ham’s F-12 (Sigma-Aldrich, St.
Louis, MO, USA cat# 51651C) and Dulbecco’s modified
Eagle ’s (Sigma-Aldr ich , St . Louis , MO, USA,
cat#D5796) medium containing 10% fetal bovine serum
(GIBCO-BRL, Eggenstein, Germany, cat#10437–077),
100 U penicillin and 400 ng/ml hydrocortisone (Sigma-
Aldrich, St. Louis, MO, USA) at 37 °C in a 5% CO2 air
atmosphere. Cells were subcultured by disaggregation
with trypsin (0.1%) and ethylenediaminetetraacetic acid
(0.01%)(GIBCO-BRL, Eggenstein, Germany, cat#
25300120) in phosphate-buffered saline (PBS) (Sigma-
Aldrich, St. Louis, MO, USA cat# 1314-87-0) at pH 7.5.

Selective Inhibition of p38Cells were plated in 6-well plates at
a density of 5 × 104 cells/well and were allowed to grow to
80% confluency. Then, cells were either treated with vehicle
alone [dimethyl sulfoxide (DMSO) at a maximum concentra-
tion of 0.1%] or with the selective p38 inhibitor SB203580
(Calbiochem; EMD Millipore, Billerica, MA, USA) at con-
centrations of 10–20 μM for 24 h.

Western Blot AnalysisWestern blot analysis was performed
as we previously described [2]. Cells were lysed and
sonicated in the lysis buffer. Equal amounts of protein
were subjected to SDS-PAGE. After protein separation
by electrophoresis , samples were transferred to
polyvinylidene difluoride films (Bio-Rad Laboratories,

Inc., Hercules, CA, USA). Blotted films were placed in
blocking solution for 1 h at room temperature.
Subsequently, they were probed with indicated primary
antibodies overnight at 4 °C: monoclonal STAT3 (1/250)
(mouse #9139), polyclonal phospho-STAT3 (Tyr705)
(1:250)(rabbit #9131), polyclonal phospho-STAT3
(Ser727) (1:200) (rabbit #9134), total polyclonal p38
(1/300) (rabbit # 9212S), monoclonal p-p38 (1/200) (rab-
bit # 4631) and polyclonal cyclin-D1(1/250) (rabbit
#2922). All antibodies were purchased from Cell
Signalling (Cell Signaling, Beverly, MA, USA). The film
was washed thoroughly, incubated with goat polyclonal
anti-rabbit IgG horse radish peroxidase secondary anti-
body (1:3.000; Santa Cruz Biotechnology, Santa Cruz,
CA, USA, # sc-2301) or anti-mouse IgG antibody (dilu-
tion, 1:3.000; Santa Cruz Biotechnology, CA, USA,# sc-
2031) with shaking at room temperature for 1 h at 25 °C;
β-actin was used as control (Santa Cruz Biotechnology,
Santa Cruz, CA, USA, # sc-47,778). Proteins were visu-
alized using an enhanced chemiluminescence system and
band intensity was quantified using Image J software1.48
(https://imagej.nih.gov/ij/).

Cell Proliferation and Viability Cells were counted with a
Neubauer hemocytometer under an inverted Zeiss Axioplan
microscope (Zeiss, Carl Zeiss Ltd, Jena, Germany). Cell via-
bility upon treatment was determined by the Trypan blue dye
(Bio-Rad Laboratories, Inc., Hercules, CA, USA #1450021)
exclusion test. All assays were performed in quadruplicate and
the results are reported as the mean ± standard deviation.

Statistical analyses Results of protein expression levels, cell
viability and cell number of treated cells were compared with
the results of untreated (control) cells respectively. Paired
groups were compared with the Student’s t test and level
was set at 5% (p < 0.05).

Statistical analyses were performed using the SPSS® soft-
ware application (version 21.0; IBM® SPSS Statistics,
Chicago, IL, U.S.A.) with P < 0.05 as the threshold of
significance.

Results

Study Sample Patients’ Demographics

The frequency distribution of selected characteristics of the
patients whose biopsy specimens comprised the study sample
are presented in Table 1, according to gender. The sample
consisted of 60 cases, namely 33 men (55.0%) and 27 women
(45.0%). The mean age was 61.2 years (±7.8 years; range, 42–
73 years) for men and 63.4 years (±9.3 years; range, 40–
83 years) for women. Mean ages between these two groups
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were comparable (P = 0.323). A non-statistically significant
distribution according to tumor site and the history of smoking
and alcohol intake was also observed between men and wom-
en, as can be deduced from Table 1.

Immunohistochemical (IHC) Expression Patterns
and their Correlation with Tumor Grade

IHC staining was positive in 84.2% (16/19) of WD, in 85.0%
(17/20) of MD and in 94.4% (17/18) of PD cases. WD, MD
as well as PD cases demonstrated minor differences in the
mean scores in all three studied variables, as depicted in Fig.
2. p-p38 is highly expressed in OSCC, however two Tailed
Fisher’s Exact Test revealed that p-p38 immunoexpression
did not appear to correlate with tumor degree of differentia-
tion (Table 2). Kruskal-Wallis one way analysis pointed out
that the distribution of p-p38 intensity, percentage and

combined scores are the same across categories of differenti-
ation (Fig. 3) while Spearman’s Correlation Coefficients anal-
ysis found no statistically significant correlation between p-
p38 IH levels (intensity, percentage, combined) and progres-
sion of tumor grade (Table 3) .

Effects of p38 Selective Inhibition in OSCC Cell Lines Selective
inhibition of p38 activity in OSCC cells treated with
SB203580 resulted in a slight decrease in cell viability and a
higher but not statistical significant decrease in absolute num-
ber of living cells in both cell lines.

Western blot analysis showed that endogenous levels of
total p38 were almost steady when 10μΜ and 20μΜ of
SB203580 inhibitor were used. As expected, decreased levels
of p-p38 were also observed in a dose-dependent manner. The
relative STAT3 phosphorylation levels remained almost un-
changed for both pSTAT3 Tyr705 and Ser727. Moreover,
cyclinD1 levels did not appear a significant change.

Discussion

Several lines of evidence highlighted the involvement of p38 in
many types of cancer such as prostate [33–35], breast [36] and
bladder cancer, [37, 38]. Indeed, activation of p38 has been
correlated to the epithelial-mesenchymal transition (EMT) of
cells in the primary tumor and enhanced the ability of tumor
cells to invade and migrate to the surrounding tissues in gastric
adenocarcinoma and pancreatic cancer [39, 40]. In contrast, p38
MAPK inhibition was associated with the resistance to anoikis
in canine kidney epithelial cells [41], while p38 activation was
responsible for pharmacological-induced apoptosis in human
lung cancer cells [42], p53 activation and p53-induced apopto-
sis and cell cycle arrest in mice embryo fibroblasts [43].

In the present study, high p-p38 immunoexpression levels
appeared to the majority of OSCC tissue specimens, however
p-p38 immunoexpression did not correlate with differentiation

Table 1 Frequency distributions of selected demographic variables
according to gender

Characteristics Men Women P Total

n 33 (55.0%) 27 (45.0%) 60 (100%)

Age:

Mean (±S.D.) 61.2 (±7.8) 63.4 (±9.3) 0.323* 62.2 (±8.5)

Range 42–73 40–83 40–83

Tumor site:

Tongue 21 (35.0%) 19 (31.7%) 0.677** 40 (66.7%)

Floor of mouth 7 (11.7%) 6 (10.0%) 13 (21.7%)

Alveolar crest 5 (8.3%) 2 (3.3%) 7 (11.6%)

Positive history of:

Smoking 25 (41.7%) 23 (38.3%) 0.519** 48 (80.0%)

Alcohol intake 15 (25.0%) 8 (13.3%) 0.189** 23 (38.3%)

S.D., Standard Deviation
* Student’s t-test
** Two tailed Fisher’s exact test

Fig. 1 Indicative staining for p-p38 protein including well, moderate and
poor differentiated cases. Immunohistocemical staining of p-p38 in
OSCC (magnification X200). Representative photomicrographs for each

molecule in well, moderately and poorly differentiated tumors are
depicted. Overall, p-p38 immunoexpression did not show noticeable dif-
ferences among cases of variable differentiation
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or the progression of tumor grade. Nevertheless, high rates of
expression may imply a role of p38 in HNSCC tumorigenesis.
Similarly, previous immunohistochemical studies in series of
humanHNSCC tissues demonstrated significant elevated levels
of p-p38 in 79% of studied cases, whereas relative p-ERK1/2
and p-JNK elevated levels were present in just 33% and 16% of
the cases, respectively [25]. In addition, both p38 and p-p38
expression levels were considered independent prognostic risk

factors in a tissue microarray assay of patients with Diffused
Large B Cell Lymphoma [44], while a predictive model of high
ATF6α but low p-p38 expression was proposed as potential
biomarker of recurrence risk in resected biliopancreatic adeno-
carcinoma tissues [45]. Considering the aforementioned contro-
versial evidence, we could hypothesize that the significance of
p38 as a prognostic biomarker in cancer may vary according to
the type and status of the studied cells.

Fig. 2 IHC staining was positive
in 84.2% (16/19) of WD, in
85.0% (17/20) of MD and in
94.4% (17/18) of PD cases. WD,
MD as well as PD cases
demonstrated minor differences
in the mean scores in all three
studied variables

Table 2 Two Tailed Fisher’s Exact test: p-p38 immunoexpression did not appear to correlate with tumor degree of differentiation

IHC p-p38 Grade of Differentiation

Well (n = 19) Moderate (n = 20) P
(Well vs Moderate)

POOR (n = 18) P
(Well vs Poor)

P
(Moderate vs Poor)

n % n % n %

Intensity

0 3 15,8% 3 15,0% 0.999 1 5,6% 0.476 0.651
1 4 21,1% 5 25,0% 7 38,9%

2 3 15,8% 3 15,0% 4 22,2%

3 9 47,4% 9 45,0% 6 33,3%

Percentage

0 3 15,8% 3 15,0% 0.969 1 5,6% 0.699 0.874
1 5 26,3% 5 25,0% 4 22,2%

2 6 31,6% 5 25,0% 5 27,8%

3 5 26,3% 7 35,0% 8 44,4%

Combined score

0–2 6 31,6% 5 25,0% 0.714 5 27,8% 0.999 0.921
3–4 4 21,1% 7 35,0% 5 27,8%

5–6 9 47,4% 8 40,0% 8 44,4%
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Furthermore, we sought to examine the effects of p38 chem-
ical inhibition on cell proliferation and viability of OSCC cells.
According to our results, inhibition of p38 activity had almost no
effect in cell viability and showed a slight decrease in absolute
number of living cells in both cell lines. Consistent with our
in vitro data, previous studies indicated that pharmacological
inhibition of p38 did not affect autophagy regulatory proteins
and autophagosome formation in HNSCC [46], [6-(N,N-
Dimethylamino)-2-(naphthalene-1-yl)-4-quinazolinone] DPQZ-
induced cell death in HNSCC [47] and mevastatin-induced cell
growth inhibition and apoptosis of salivary adenoid cystic carci-
noma cells [48]. Furthermore, in a MAPK assay, Shen et al.
reported that ERKs and JNKs, but not p38, were responsible
for the cyclin D1 decrease in human embryonic lung fibroblasts
[49]. However, a deep insight on the role of p38 in HNSCC
reveals controversial reviews between research groups, giving

motivation for intensive investigation. Indeed, Juntila et al. [24]
reported that p38 promoted proliferation and survival of HNSCC
cells while Leelahavanichkul et al. [25] suggested that p38α
functioned as a positive regulator of HNSCC, controlling cancer
cell proliferation as well as tumor-induced angiogenesis and
lymphangiogenesis. In addition, AKT, p38 and Src Family
Kinases (SFK) inhibitors were proposed to reduce survival of
HNSCC, in combination with radiotherapy [50]. Likewise,
NF-κB, p38, and JNK inhibitors suppressed IL-6 expression
and enhanced sensitivity of HNSCC to erlotinib [51].

In contrast, Riebe et al. [26] suggested that activation of p38
decreased cell proliferation and Yen et al. [27] concluded that
cardiotoxin III posed antiproliferative effects on oral cancer cells
through p38-MAPK signaling. Moreover, IFNg treatment of
HNSCC cells induced apoptosis through mitochondrial and en-
doplasmic reticulum (ER) stress-associated pathways including
p38 [1], while TNF treatment enhanced p38 phosphorylation and
increased chemosensitivity [52]. Other studies, introducing che-
motherapeutic agents, demonstrated that sequential treatment
with bortezomib and celecoxib favored apoptosis through p-
p38-mediated cell cycle arrest associated with ER stress respone
in HNSCC cells [53]. Similarly, celecoxib antitumor effect on
HNSCC cells depended on upregulation of ERK and/or p38
signaling pathways [54].

As regards to the role of p38 in HNSCC metastasis, it was
suggested that chemical inhibition or silencing of p38 resulted
to a less invasive phenotype [55, 56]. In addition, individual or
combined treatment with Epigallocatechin gallate (EGCG)
and gefitinib followed by downregulation of ERK, JNK, p38
and AKT, reduced metastatic potential of HNSCC cells [57]
while irradiation enhanced AKT, p38 MAPK and ERK ex-
pression resulting in elevated tumor cell migration [58]. In

Fig. 3 Independent-Samples Kruskal-Wallis Test showed that the distribution of p-p38 intensity, percentage and combined scores are the same across
categories of differentiation

Table 3 Speaman’s Correlation Coefficients; Results indicating no
statistically significant correlation between p-p38 IH levels (intensity,
percentage, combined) and progression of tumor grade

Differentiation

p-p38 intensity score Correlation Coefficient -,057

Sig. (2-tailed) ,676

N 57

p-p38 percentage score Correlation Coefficient ,165

Sig. (2-tailed) ,221

N 57

p-p38 combined score Correlation Coefficient ,051

Sig. (2-tailed) ,708

N 57
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contrast, Yen et al. [27] reported that cardiotoxin III increased
JNK and p38 phosphorylation but decreased MMP-2 and
MMP-9 expression as well as migration of oral cancer cells.

Another interesting finding of the present research was
that treatment of OSCC cells with pharmacological inhibi-
tor of p38 (SB203580), down-modulated the phosphoryla-
tion of p38 but led to no significant changes in tyr705 or
ser727 STAT3 expression. In agreement with our results,
Platanias et al. [59] reported that p38 played an important
role in Type I IFN-dependent transcriptional regulation,
without affecting activation of STAT pathway. Also,
Tanabe et al. [60] demonstrated that 8-Bromo cAMP treat-
ment of glial cells induced IL1β-dependent STAT3 phos-
phorylation but did not affect IκB, p38 or JNK phosphor-
ylation. However, Riebe et al. [61] described that down-

regulation of p38 expression levels by siRNA-targeting
strongly reduced phosphorylation of STAT3 tyr705 without
affecting phosphorylation of STAT3 ser727 in HNSCC cell
lines. In contrast, activation of ERK and p38-dependent
pathways inhibited STAT3 activity in human lung adeno-
carcinoma cells [32], while p38 was suggested to inhibit
IL-6-JAK-STAT3 pathway in inflammatory and other cell
types [30]. Based on these findings, we could speculate that
p38 function and regulatory effect on STAT3 signaling sig-
nificantly varies, probably depends on the activated path-
way and seems to be stimuli as well as cell type-specific
[28, 62, 63].

In summary, our findings indicate that p38 does not appear
to modulate oncogenic STAT3 pathway activation in OSCC
cells. Even though changes found in proliferation and viability

Fig. 4 Western blot analyses and relative quantification of WB protein
levels (compared with β-actin protein) in the two studied cell lines.
*Statistical significant difference (P < 0.05) compared with control.
Western blot analysis showed that endogenous levels of p38 were
almost steady when 10μΜ and 20μΜ of SB203580 inhibitor were

used. SB203580 induced a dose-dependent decrease in p-p38 levels.
The relative STAT3 phosphorylation (ser and tyr) levels remained
almost unchanged for both pSTAT3 Tyr705 and Ser727. Moreover,
cyclin D1 levels did not show significant changes

Fig. 5 Selective inhibition of p38 activity by SB203580 in OSCC cells resulted in a slight decrease in cell viability and a higher but not statistical
significant decrease in absolute number of living cells in both cell lines
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after p38 inhibition were modest, high expression observed in
all OSCC tissues may suggest that p38 functions as a potent
regulator of HNSCC. It is possible that the role of p38 in
cancer and STAT3 regulation varies according to the type
and status of the studied cells, supporting the need for further
investigation. Understanding the complexity of MAPK path-
way and the mechanism underlying cross-talk between other
major molecules such as STAT3 will elucidate novel potential
targets for molecular-based therapies.
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