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Abstract Prostate cancer is a big killer in many regions
especially American men, and this year, the diagnosed rate
rises rapidly. We aimed to find the biomarker or any changing
in prostate cancer patients. With the development of next
generation sequencing, much genomic alteration has been
found. Here, basing on the RNA-seq result of human prostate
cancer tissue, we tried to find the transcription or non-coding
RNA expressed differentially between normal tissue and pros-
tate cancer tissue. 10 T sample data is the RNA-seq data for
prostate cancer tissue in this study, we found the differential
gene is TFF3-Trefoil factor 3, which was more than seven fold
change from prostate cancer tissue to normal tissue, and the
most outstanding transcript is C15orf21. Additionally, 9
lncRNAs were found according our method. Finally, we
found the many important non-coding RNA related to prostate
cancer, some of them were long non-coding RNA (lncRNA).
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Introduction

Prostate cancer is a type of cancer that develops in the
prostate, a gland in the male reproductive system.
Detection rate of prostate cancer vary widely across the
world, with higher rate in developed countries than in de-
veloping countries. It has been the most frequently diag-
nosed cancer in American men. And this trend rises rapidly
in recent years. Among men in the United States, prostate
cancer accounts for more than 200,000 new cancer cases
and 32,000 deaths annually [1]. These evidence alerts us the
importance for researching prostate cancer.

The androgen deprivation therapy yields transient effica-
cy in prostate cancer sufferer, and there are many patients
cannot survive from this deadly killer. As the development
of the Next-Generation-Sequencing, many somatic muta-
tions or other genomic alteration has been found, our knowl-
edge about prostate cancer mutation has been expanded. For
example, by exon-sequencing of 112 pair prostate cancer
tissue this year, Gordon’s team not only found the three
genes-MED12,FOXA1 and SPOP which are always recur-
rently mutated in prostate cancer patients, but also found a
gene fusion [2]. Basing on the Integrating exome copy
number analysis, Kenneth identified disruptions of CHD1
that define a subtype of ETS gene family fusion-negative
prostate cancer [3]. All those genomics alteration found by
next-generation-sequencing are the potential treatment tar-
get in future.

Referring to the use of high-throughput sequencing tech-
nologies, RNA-seq, which is short for “Whole Transcriptome
Shotgun Sequencing-WTSS”, sequence cDNA in order to
get information about a sample’s RNA content [4],such as
gene expression level, new isoform, and so on. As soon as
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this technology has published, it has adopted to disease
research filed such as cancer [5]. In Mark’s study, basing
on the RNA-seq result of prostate cancer tissue, they
detected non-ETS gene fusions in human prostate cancer.
They discovered and characterized seven new cancer-
specific gene fusions, two involving the ETS genes
ETV1 and ERG [6]. In 2012, aiming to find the ethnic
variation, scientific from University of Michigan Medical
School also used RNA-seq technology to deeply insight to
Chinese prostate cancer patients [7].

A non-coding RNA (ncRNA) is a function RNA mole-
cule that is not translated into a protein. It contains abundant
RNA such as tRNA, miRNA, snoRNA, Piwi-RNA and
rRNA and so on. The large number of ncRNA is unknown
now, and recently, through many bioinformatics study and
new experiment technology, many ncRNA were found, es-
pecially some small RNA. After the genome sequencing
project have released, this project have revealed an unex-
pected problem in our understanding of the molecular basis
of developmental complexity in the higher organisms: com-
plex organisms have lower numbers of protein coding genes
than anticipated. The new role-non-coding RNA have been
proved to make the architects of eukaryotic much more
complexity [8]. Moreover, miRNA have drew many scien-
tific attention after the Nobel prize for the miRNA discov-
erer. As the important roles of those small non-coding RNA,
such as miRNA, Piwi-Interaction RNA in animal develop-
ment [9], the long non-coding RNA drew scientific attention
either. If the length of ncRNA is greater than 200 bp, we
named them long non-coding RNA (lncRNA). This rapid
advance filed shows a great potential of their regulation func-
tion [10]. In 2011, Howard and his team found that the long
non-coding RNA HOTAIR is increased in expression in pri-
mary breast tumors and metastases, and HOTAIR expression
level in primary tumors is a powerful predictor of eventual
metastasis and death [11]. All these findings suggest that non-
coding, included miRNA, non-transcript genes and long
ncRNAs play active roles in modulating the cancer genome
andmay be important targets for cancer diagnosis and therapy.

In our study, basing on the RNA-seq result of human
prostate cancer tissue, we analysis the data between prostate
cancer samples and control samples, aligned them, then
assembled the transcripts and finally obtained the transcrip-
tion and non-coding RNA, which may be important targets
for cancer diagnosis and therapy.

Materials and Methods

Data Achievement

Our project is based on the RNA-seq data of a former
study’s sequencing result [12]. All those data is available

on European Nucleotide Archive [13] (ENA; http://
www.ebi.ac.uk/ena). It’s the primary nucleotide-sequence
repository of Europe. ENA collects comprehensive record
of the world’s nucleotide sequencing information, and con-
sists of three main databases: the Sequence Read Archive
(SRA), the Trace Archive and EMBL-Bank. When
collecting sequencing data, we used the rule bellow: 1)
paired-end sequencing; 2) of more than 50 bp length.
Those two rules were selected because of our alignment
tools. We will explain it later.

Data Preprocessing

According to the preprocessing method of the former study
where our data from, we filtered the reads with the following
cutoff condition: (1) N-bases number is above and beyond
2 %; (2) the low-quality bases is above and beyond
50 %(Q≤15). Then, we drew base quality distribution to
profile the filtering effects.

Alignment, Assemble and Estimate Abundances

The traditional RNA-Seq data analysis method was based
on denovo assembling and aligning with reference for se-
quencing annotation. While this method found the new
transcripts only relying on matching different genes between
both sides of reads, so it mostly limited the length and
numbers of reads, and cannot detected the region of
breakpoint.

The new method aligned the genes and cleavage site, and
then built the mimetic exon-exon references data using
assembling of cleavage site to find differentially expressed
genes and transcription as mostly as we can.

It can fix the fragment ends to the different exons to
determine which spliceosome is correct, do not need with
the previous annotation information.

In this paper, we use this new method for the bioinfor-
matics. There are three steps:

1. the first step, alignment, TopHat [14] is chose to align-
ment. It aligns reads to genomes using Bowtie, and then
analyzes the mapping results to identify splice junctions
between exons.

We used hg19 to construct the reference library, with the
following condition: 1) minimum intron length is 70; 2)
maximum intron length is 500000; 3) tolerance 3 bp
deletion/insertion; 4) tolerance two mismatch, samples
10 N and 10 T was mapped and then generated two
bam files.

2. We used cufflinks [15] software for the second
step—assembling transcripts. Some parameters was set
for assemble:1) Mean Inner Distance between Mate
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Pairs is 20; 2) Standard Deviation for Inner Distance
between Mate Pairs is 20.

3. The third step, we also used Cufflinks estimated the
relative abundances of these transcripts based on how
many reads support each one. Two normalization
methods Quartile and Bias correction are used for im-
proving accuracy of transcript abundance estimates.

Merging Transcripts

The two transcript assembly result of two samples 10 N and
10 T produced were merged by the cufflinks. Mergence
conditions: 1) the transcripts have different IDs and the
positions are uniform; 2) the transcripts have the intersection
of sets with genome mapping; 3) the distance between the
transcripts is less than 500 bp. According to these condi-
tions, we got a new transcript that is no redundancy
information.

Analysis Transcripts Expression

Combined the assemble transcripts and the alignment pro-
duced by Tophat, we computed the expression value of
every transcripts. Traditional expression value was repre-
sented by RPKM [16], it means the reads number of one
gene per million reads, considering the impact on reads
count of sequencing depth. At the same time, because the
reads are pair-end, we can connect the pair reads to rebuild
the fragment input to sequencer. Basing on the RPKM
algorithm, we computed the fragment count, and got the
FPKM value. It is more reliable to substitute the RPKM
with the expression value [17].

Finding Significant Transcripts

As we can imagine, transcripts must have some significant
different FPKM value between two samples. So, we com-
bined the FPKM in two samples according to transcripts,
calculated the fold change value of them, and computed the
p-value. Then, we used these two feature value of each
transcripts to plot volcano picture. After that, we can get

the significance boundary to define the transcript if differ-
entially expressed or not.

Results

Summary of Raw RNA-seq Data

The RNA-seq data which is complete transcriptomic land-
scape of prostate cancer in the Chinese population were
downloaded from ENA. Basing on the rule we described
before, we finally chose two sample-10 N and 10 T for our
analysis, which are pair-end sequenced, and of 90 bp length.
Detail information is shown in Table 1. 10 N sample data is
the RNA-seq data for normal tissue, and 10 T sample data is
the RNA-seq data for prostate cancer tissue.

Prepossessing Result of Sequencing Data

To evaluate the prepossessing method we used, we drew box
plot picture of bases quality through whole reads before and
after prepossessing. Figure 1 showed the distribution of bases
quality map before and after filtering (Fig. 1). Certainly, the
upper half part is the distribution of bases quality map of raw
data, the lower half part is that of preprocessing data. The
black line in each box represents themedian quality score. The
information this picture tells us: (1) The fluctuating of bases
quality is lower in prepossessed data than in raw data, which
suggested that the filter method was worked; (2) The overall
data are distributing in the part more than Q15, the median
value is in more than Q34 and focus on more than Q36.
Consequently, after preprocessing, the quality of reads has
improved significantly. The data of preprocessing is used for
all our following analysis. Table 2 showed the statistics result
of data before and after preprocessed (Table 2).

Alignment and Assemble

We used TopHat for sequences alignment, and Cufflink for
transcripts assembling. We thought our method which aligns
first is of great potential to make use of the RNA-seq data as

Table 1 Sample information table

Sample name Type Library Data size ENA ID Download address

10 T Tumor Pair-end 12G base ERR031018 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR031/ERR031018/
ERR031018_1.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR031/ERR031018/
ERR031018_2.fastq.gz

10 N Normal Pair-end 12G base ERR031017 ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR031/ERR031017/
ERR031017_1.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR031/ERR031017/
ERR031017_2.fastq.gz
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many as we can. After the assemble result came out, we
merged the “neighbor” transcripts as method session
commented, and got the merging result of all transcripts.
For example, if transcript A in sample 10 N is overlapped
with transcript B in sample 10 T, we merged them for the
convenient comparing. Finally, samples 10 N and 10 T get
about 400,000 and 230,000 transcripts, respectively.

FPKM Distribution

To profiling the expression level of each transcript, we
calculated an average fragments per kilo base of transcript
per million fragments mapped (FPKM). According the
FPKM calculation foundation described before, we got the
FPKM value of all transcripts. Figure 2 is the density dis-
tribution mapping of the FPKM of every transcript (Fig. 2).
As we can see, 10 T samples have higher FPKM value than
10 N samples. It seems that cancer samples are always of

greater expression level than the normal samples. 10 T
samples have two peak value of FPKM distribution. The
first peak in 0.7–0.8 log10(FPKM), which cannot find in
samples 10 N. The second peak is shared with two samples
in almost 0 value. Figure 3 is the box plot of the FPKM of
the all transcripts of two samples (Fig. 3). In this picture, we
can understand the distribution much better. Samples 10 N
have median value under 0 log10 (FPKM), and have no
outstanding outliers. But in samples 10 T, the median value
is increased upon 0, and has many outstanding outliers. To
further analysis those outlier transcripts, we tried to find the
boundary to distinguish differential transcripts.

Significant Transcripts

By calculating the p-value and fold change with FPKM
between two samples, we got all differential level of all
related transcripts. Figure 4 is the volcano picture, which

Fig. 1 The distribution of bases quality about before and after processing map

Table 2 The statistics result of
reads about before and after
processing

Sample Before preprocessing
reads number

After preprocessing
reads number

Reads
length

10 N 34536162*2 31500516*2 90 bp

10 T 34007787*2 30925707*2 90 bp
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reflects the different situation of related transcripts between
two samples (Fig. 4).

According to the information of Fig. 4 showed, we set the
following boundary to distinguish differential transcriptions:

1) FPKM is more than three in both of two samples
2) |log2(fold_change)|>2;
3) P-value<0.006.

According to the above conditions, we got 197 signifi-
cant transcripts (supplement), and there are 17 transcripts
are non-coding transcripts. See Tables 3 and 4.

New lncRNA Discovery

To deeply analysis the other non-coding region, we focused
on the long non coding RNA. We selected the assembling
transcripts with over 200 bp length long, and located them
on all human genes. The assembling transcripts cannot
located in any of human genes are what we called

lncRNA. Finally, we found that 36 lncRNAs are significant
differential lncRNA shown in Table 5.

Discussion

Differential Coding Transcripts

As we can see in Table 4, the most differential gene is
TFF3-Trefoil factor 3, which was more than 7 fold change
from prostate cancer tissue to normal tissue. Some cDNA
expression array analysis reveals that TFF3 may over
express in prostate cancer patients. Recently, many studies
have reported the strong relationship between gene TFF3
and prostate cancer. In 2004, immunohistochemistry was
performed on a prostate cancer tissue microarray
containing tumor tissue samples from 246 primary radical
retro pubic prostatectomy cases with antibodies specific
for TFF3, and Reiter’s team ensured that the up-expressed
situation of TFF3 were found in those tumor sample [18].
Then, in 2008, Arul’s team announced that they have
processed qPCR on seven prostate cancer biomarker,
and found that TFF3 was a biomarker truly [19]. Now,
our project has confirmed it. What all we human should
do is developing the diagnosis kit for prostate early
detecting. And interesting, we found the gene TFF1 was
also in our Top 10 differential genes. But in our list, TFF1
has an opposite trend with TFF3, down-expressed in
prostate cancer patients. In the many former study, most
of them said that TFF1 (ps2 protein) was an up-expressed
gene in prostate tumor. The family trefoil factor, included
TFF1, TFF2, TFF3, are all over-expressed in prostate
tumor, and the genes in this family are so differentially
expressed in plasma levels in patients with advanced
prostate cancer [20]. But shahid collected 95 malignant

Fig. 2 The density distribution mapping of FPKM(Q1:10 N Q2:10 T)

Fig. 3 Boxplot of FPKM in two samples (Q1:10 N Q2:10 T)

Fig. 4 Volcano picture of two samples
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prostatic specimens from primary adenocarcinoma,
performed immunohistochemical staining, he found that
there was no significant correlation between TFF1 expres-
sion and the stage of disease, but TFF1 expression in
prostate cancer significantly correlates with histological
grade and the neuroendocrine differentiation [21]. So,
although the TFF1 trend in our analysis is opposite with
some other studies, this study reveals us that TFF1 can be
a biomarker, but only for some stage of prostate cancer.
Because TFF1 maybe reflects a contradiction expression
level in different prostate cancer stage.

Differential Non-Coding Genes

Why we concern about the non-coding genes? The non-
coding genes are always some pseudogene, or some
function-unknown open reading frame. Many of them can-
not be related to disease, especially cancer. But if we found
them differentially over-expressed, we can say that gene has
a great potential to be related to in the disease, for example
prostate cancer in our project. Among the 17 transcripts we
found, only two of them are down-expressed. The most
outstanding transcript is NR_022014, one transcript for gene

Table 3 Top 10 differential
transcripts Gene Value_1 Value_2 |log2

(fold_change)|

TFF3:NM_003226 3.86646 775.093 7.64721

SCGB3A1:NM_052863 135.952 3.75705 5.17735

NUDT8:NM_001243750 14.8653 448.795 4.91604

PSCA:NM_005672 211.443 9.64236 4.45474

CRABP2:NM_001199723 99.2394 4.58465 4.43603

RPS28:NM_001031 223.819 11.1042 4.33315

ANPEP:NM_001150 20.6093 348.262 4.07881

TFF1:NM_003225 543.156 33.8014 4.00621

HPN:NM_002151,NM_182983 5.23802 83.6546 3.99735

ELK4:NM_001973,NM_021795 3.81245 60.5403 3.98911

Table 4 Difference non-coding transcripts

Transcript Chromosome Start End Length Value_1 Value_2 log2(foldchange) p-value

NR_022014 chr15 45770497 45850625 80128 5.06864 70.9165 3.80645 1.62E-14

NR_046211 chr14 106109426 106331644 222218 389.782 35.9914 −3.43694 4.57E-14

NR_038342 chr4 79892901 80229953 337052 8.98933 137.257 3.93253 2.13E-10

NR_027180

NR_029684 chr5 148786439 148812563 26124 3.78058 27.4959 2.86254 3.61E-09

NR_029686

NR_027786 chr22 42896584 42978017 81433 9.66855 185.334 4.26069 5.73E-08

NR_033322 chr7 75039623 75115568 75945 3.55121 20.2116 2.5088 3.24E-07

NR_015422 chr1 246939311 246956050 16739 3.07995 15.6054 2.34107 6.17E-06

NR_024103 chr17 46800531 46806494 5963 53.1348 5.69143 −3.22279 6.68E-06

NR_026811

NR_033936 chr15 83130032 83182930 52898 3.55694 15.5705 2.13011 4.95E-05

NR_024448 chr22 23980672 24059610 78938 3.3211 30.6129 3.20441 6.53E-05

NR_002809 chr12 122233171 122241390 8219 3.7568 28.7025 2.9336 7.52E-05

NR_033874 chr4 102268933 102270040 1107 23.4628 140.186 2.57889 0.00025

NR_033853 chr11 58695101 58825925 130824 6.8126 30.7738 2.17543 0.00028

NR_028272 chr11 65190268 65194003 3735 14.4089 102.226 2.82673 0.00060

NR_024054

NR_029426 chr5 69423288 69586004 162716 6.86276 27.6591 2.0109 0.00082

NR_036447 chr16 16411465 16444465 33000 5.04424 21.8833 2.11712 0.00202

NR_033968 chr5 70503779 70555122 51343 3.86906 18.529 2.25973 0.00281
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C15orf21. We detected this gene is 3 fold up change in
prostate cancer with P=1.62E-14, fitted the result of a
former study by Arul in 2007 [22]. In his result, C15orf21
showed over-expressed in prostate cancer with significance
p-value in prostate cancer with P=3.4*10E-6, which be
confirmed by our project.

New lncRNA Discovery

Large intergenic non-coding RNAs (lincRNAs) are emerg-
ing as key regulators of diverse cellular processes.

Determining the function of individual lincRNAs remains
a challenge. In 2011, John Rinn from Broad Institute used
RNA-seq to produce the most complement catalogue of
lincRNA [23] crossing 24 tissues, included prostate cancer
tissue. So, in this catalogue, we can find their result of
prostate cancer related lncRNA. As shown in Table 5, red
highlight part represents the lncRNAs related with prostate
cancer has been published, 9 lncRNAs were found
according our method; 3 blue highlight lncRNAs have been
published but don’t find the relationship with prostate can-
cer, other 24 lncRNAs are significant in this project. So,

Table 5 Significant lncRNA

Gene_ID Locus Q1 FPKM Q2 FPKM log2 (fold_change) p-value

XLOC_017565 chr2:96502828-96593024 3.45934 21.0665 2.60639 2.54E-12

XLOC_020722 chr22:16226489-16231476 4.27748 121.458 4.82756 1.01E-09

XLOC_029109 chr7:100609801-100611622 105.792 4.28654 −4.62527 3.81E-09

XLOC_009482 chr14:19612666-19616445 9.09186 154.358 4.08556 7.28E-08

XLOC_016246 chr19:16011127-16011911 17.8498 314.085 4.13718 7.80E-08

XLOC_011528 chr16:74423901-74426024 28.5411 202.088 2.82387 8.07E-08

XLOC_024017 chr4:80748355-80799530 6.97652 101.441 3.862 2.29E-07

XLOC_017554 chr2:89156672-89161069 1629.39 376.649 −2.11303 1.74E-06

XLOC_009483 chr14:19631005-19631820 3.15919 64.6857 4.35582 4.66E-06

XLOC_013771 chr17:7967573-7971851 5.82135 57.5181 3.30459 4.97E-06

XLOC_020229 chr22:23241800-23243587 1074.74 123.706 −3.11901 3.61E-05

XLOC_024018 chr4:80802969-80804296 9.66583 76.6322 2.98699 8.05E-05

XLOC_022634 chr3:131962287-131963333 54.5552 6.39125 −3.09355 0.000144

XLOC_013949 chr17:46811997-46821760 68.7657 6.23488 −3.46325 0.000297

XLOC_009794 chr14:103674935-103675179 4.06342 74.0403 4.18755 0.000776

XLOC_009480 chr14:19605935-19606209 56.2565 399.723 2.82891 0.000839

XLOC_032885 chr9:32946905-32946998 1.99E+06 118051 −4.07376 0.001102

XLOC_002954 chr1:160864686-160866290 21.0322 93.5645 2.15336 0.001893

XLOC_020051 chr21:29780073-29791593 6.15813 27.418 2.15456 0.001952

XLOC_031343 chr8:1920327-1920524 15.9728 538.328 5.07479 0.002031

XLOC_018034 chr2:8992758-8994585 3.79683 21.1956 2.4809 0.00232

XLOC_020135 chr21:42653619-42654457 48.5836 8.46814 −2.52035 0.002354

XLOC_030098 chr7:63965435-63967371 4.09327 21.8106 2.41371 0.002564

XLOC_013816 chr17:16520352-16520763 15.194 98.4542 2.69595 0.002768

XLOC_030062 chr7:42896688-42897634 25.2703 3.75698 −2.7498 0.00299

XLOC_003179 chr1:224133263-224218601 4.76378 24.3255 2.35229 0.003358

XLOC_004375 chr10:76849265-76849359 1.04E+06 38595.4 −4.74549 0.0036

XLOC_007770 chr12:53126359-53126453 1.04E+06 38595.4 −4.74549 0.0036

XLOC_007939 chr12:95247417-95248603 3.12413 19.403 2.63476 0.003945

XLOC_019632 chr20:62258515-62260109 4.50218 22.9355 2.34889 0.004009

XLOC_022442 chr3:106561532-106639852 3.18728 40.0901 3.65285 0.004303

XLOC_033208 chr9:140445512-140446124 10.6154 56.9655 2.42393 0.004931

XLOC_023830 chr4:8356425-8358602 5.21159 23.0769 2.14665 0.005253

XLOC_009564 chr14:38377517-38378622 4.53556 24.2341 2.41769 0.005641

XLOC_004217 chr10:20011553-20011812 37.6673 3.28617 −3.51883 0.005953

XLOC_029689 chr7:102135797-102136645 458.542 38.452 −3.57593 0.005963
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there is a huge possibility that the 24 lncRNAs are related
with the prostate cancer.

Interesting

When we queried these lncRNA regions on UCSC to get the
average conservation score of each candidate or putative
lncRNA, most of them are reflecting a very low score. We
image that lncRNA are not “rubbish” any more, so they
should be conservative across mammal. But why they are
always so low conservational score? Can it explain us that,
lncRNA are not so conservative and change acutely across
mammal? All these questions are waiting to be explored.
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