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Abstract Calreticulin (CRT) as a multi-functional endo-
plasmic reticulum protein is involved in a spectrum of
cellular processes which ranges from calcium homeosta-
sis and chaperoning to cell adhesion and finally malig-
nant formation and progression. Previous studies have
shown a contributing role for CRT in a range of differ-
ent cancers. This present review will focus on the
possible roles of CRT in the progression of malignant
proliferation and the mechanisms involved in its contri-
bution to cancer invasion.
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Calreticulin

Calreticulin (CRT), as a multifunctional protein resides in the
endoplasmic reticulum (ER) [1] as well as other cellular
compartments such as the cell membrane, cytoplasm and
nucleus [2]. The CRTstructure includes the N and C terminals
and three different domains [3] (Fig. 1). The N-terminal is a
cleavable amino acid signal sequence while the C-terminal
includes a KDEL ER retrieval signal. These specific sequen-
ces of amino acids are responsible for the different functions
of CRT such as chaperoning [4], integrin binding [5], attach-
ment to steroid hormone receptors [6], Ca2+ binding and
interacting with other chaperones like calnexin [7].

Biological Functions

Molecular chaperoning and calcium homeostasis are two
main physiological role of CRT inside the ER. It is also
present on the membrane of other cellular organelles, cell
surface and in the extracellular environment where it con-
tributes to different physiological and pathological roles
such as cell adhesion, transcriptional activities and gene
expression regulation as well as recognition and elimination
of apoptotic cells [8, 9]. Finally, new roles of CRT in the
extracellular space such as the involvement in cutaneous
wound healing [10] and possible diagnostic applications of
CRT in blood [11] or urine [12] have emerged.

Transcriptional Regulation of CRT

The human CRT gene is located on chromosome 19 [13] and
its promoter region includes multiple regulatory sites such as
AP-1, AP-2 and GC rich areas (H4TF-1) [14] which are
usually present in actively transcribed genes during cellular
proliferation [1]. Calcium depletion is one of the most
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important activators of the CRT gene promoter [15, 16]. A
number of transcription factors have been identified so far as
the modulators of CRT gene which seem to be critical during
embryonic development or pathological conditions [17].

Nkx2.5, COUP-TF1, GATA6, Evi-1 andMEF2C have been
introduced as important regulators of CRT expression during
embryonic cardiogenesis [18–20]. Regulators of CRT expres-
sion during pathologic conditions, especially modulators of
CRToverexpression in cancer are less characterized. Depletion
of Ca2+ stores, an intracellular stress indicator, is able to induce
CRT gene expression in vitro and in vivo [15]. A recent study
revealed that TNFα works as a negative regulator of CRT
expression through the suppression of C/EBPα [21].

Calreticulin and Cancer

CRT has been found to be up-regulated in proliferating
myoblasts [22] while its nuclear/ER expression ratio is
increased in malignant liver cells [23]. Furthermore, CRT
as a major calcium homeostasis regulator is possibly en-
gaged in cellular invasion and metastasis through the induc-
tion of cell migration [24] as migratory and invasive

potentials of cancer cells are associated with dynamic intra-
cellular Ca2+ signaling events [25]. It is also known that
CRT is capable of preventing anoikis [26], although Akt
modification was reported as a major contributor in CRT-
associated apoptosis [27–29].

An association between the presence of CRT and tumor-
igenesis has been the focus of recent studies where they
have mostly reported positive correlations as summarized in
Tables 1 and 2. In brief, CRT over expression has been
reported in ductal carcinoma of the breast [30, 31], bladder
cancer [32], prostatic adenocarcinoma [33], hepatocellular
carcinoma [23, 34], pancreatic malignancies [35], esopha-
geal cancer [36, 37], gastric cancer [38], colon cancer [39],
melanoma [40, 41] and leukemia [42]. In addition, CRT
expression is also associated with a more invasive and
advanced malignant processes as well as poorer prognosis,
as have been reported in esophageal cancer [36], gastric
cancer [43] and ductal carcinoma of the breast [44–46]. In
bladder cancer cells, CRT knockdown suppressed prolifera-
tion, migration and attachment while its overexpression
induced cell migration and attachment [47]. This was ac-
companied by a reduction in pulmonary metastatic forma-
tion in CRT-knockdown cells [48].

Fig. 1 Calreticulin protein
structure and functions

Table 1 CRT expression in various cancers

Cancer type CRT expression Molecular/cellular finding Clinical findings Reference no.

Pancreas ↑ ↑mRNA, ↑CRT-Ab – [35]

Liver ↑ ↑CRT protein in nuclear matrix – [23]

Esophagus ↑ ↑mRNA, ↑CRT protein ↓survival [37, 66]

Stomach ↑ ↑CRT protein ↑invasion, ↑metastasis, ↓survival [43]

Colon ↑ ↑CRT protein in nuclear matrix – [39]

Breast ↑ ↑mRNA, ↑CRT protein ↑invasion, ↑metastasis, ↓survival [30, 31, 44, 45]

Skin (melanoma) ↑ Active proliferation/↑migration – [40, 41]

Blood (AML) ↑(inductive) ↓ cellular differentiation – [42, 46]

Connective tissue ↑ ↑cellular motility ↑lung metastasis [48]

Bladder ↑ ↑mRNA, ↑CRT protein ↑urinary CRT [32]

Bladder ↑ ↑mRNA, ↑CRT protein ↑lung metastasis [47]

Prostate ↑ ↑CRT protein – [33]

Prostate ↓ ↓CRT protein – [50]

Prostate ↑(inductive) ↓tumor formation – [50]

↑: increased, ↓: decreased

The table shows the correlation between CRT expression and molecular/cellular outcomes as well as clinical consequences in different cancers
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In the prostate, CRT acts as an androgen-modulated intra-
cellular Ca2+ regulator. CRT expression is higher in prostatic
epithelial cells which implies that CRT is a direct androgen
responsive gene [49]. In prostate cancer, the role of CRT
remains contradictory. Significant over-expression of CRT
was reported in prostatic adenocarcinoma when compared
to benign hyperplasia [33]. However, a recent study con-
firmed that fewer malignant colonies as well as the inhibi-
tion of xenograft tumor formation following over-
expression of exogenous CRT in prostate cancer cells.
CRT down-regulation was also reported in human prostate
cancer tissues [50].

CRT Role in Cancer Immunogenic Cell Death

CRT has been reported to be activated in peripheral T cells
[51]. It is also found abundant inside the granules of cytotoxic
lymphocytes [52] suggesting its potential role as a modulator
of cytotoxic activity of these granule proteins [53, 54]. It is
now also well-known that CRT can be a key player in the
detection and engulfment of dying tumor cells by macro-
phages [55]. This explains why drugs with the potential of
triggering CRT exposure when combined with conven-
tional chemotherapy are able to activate the immune
system and therefore promote cancer immunogenic cell
death [56] as reported in colon cancer cells treated by
pro-apoptotic drugs such as anthracyclines [55]. In this
process, CRT was reported to be recognized by LRP
and C1q [57]. The same process has been reported in
clonal plasma cells of patients with systemic light chain
amyloidosis, in which, CRT expression has been corre-
lated with response to high-dose therapy [58]. The abil-
ity of CRT in maximizing cancer cell death through its
immunogenic function makes it a putative biomarker for
the evaluation of therapeutic response [57].

Probable Mechanisms of CRT Contribution to Cancer
Invasion

Previous studies have introduced or proposed several func-
tional pathways through which CRT may exert its enhancing
effects on pro-cancer/pro-invasive processes duringmalignant
formations (Fig. 2). Some of these pathways are discussed.

Slug/E-Cadherin Pathway

E-cadherin suppresses invasion and metastasis in carcinoma
cells and its inhibition is a key step for gaining the hallmarks
of malignant cells [59]. Canine kidney CRT over-expressing
cells have shown significant down regulation in E-cadherin
expression and enhanced migratory potential [60]. Further-
more, these cells demonstrated higher expression of Slug
which is a suppressor of E-cadherin promoter. Thus, a regu-
latory function for CRT in epithelial cell-cell interactions
including changes in adhesion and migratory potentials due
to modulation of Slug/E-cadherin pathway is proposed [60].

CTTN–PI3K–Akt-Signaling Pathway

Activated Akt, a major regulator of important cellular pro-
cesses such as cell cycle progression, growth and survival is
produced following the transfer to the inner cell membrane
and via interactions with phosphatidylinositol-3 kinase
(PI3K) [61]. The signal transducer and activator of tran-
scription 3 (STAT3) is a modulator of Akt expression [62]
through which it induces proliferation, survival and invasion
of tumor cells [63]. Finally, cortical actin binding protein
(CTTN) is a modulator of PI3K–Akt signaling pathway
where it induces cell motility as well as resistance to anoikis
[64, 65]. It is now confirmed that in esophageal squamous

Table 2 Possible mechanisms involving CRT during tumorigenesis

Pathway Cancer/cell type Cancer related function Possible CRT action Consequence Reference no.

E-cadherin Madin-Darby Canine
Kidney Cell

Inhibition of invasion ↑Slug Inhibition of E-cadherin [60]

PI3K-Akt Esophageal squamous
cell carcinoma

Cell cycle progression,
↑cell survival, ↑ cell growth

↑STAT3/CTTN ↑motility, ↓anoikis [66]

ERα Breast cancer cell line ↑proliferation, ↓invasion attachment to
KxFF[K/R]R motif

↑invasion [69]

Ca2+ HeLa cells ↑cell motility ↑Ca2+ release from ER ↑cellular migration [77]

TSP1 Mouse embryonic
fibroblast

↑cell motility, ↓cell adhesion LRP1 ↑motility, ↑invasion [26]

VEGF Gastric cancer cells ↑proliferation, ↑cell motility ↑VEGF ↑invasion [43]

Focal adhesion
complex

Bladder cancer cells ↑proliferation, ↑cell motility ↑Paxillin, ↑focal
adhesion kinase

↑invasion, ↑metastasis [47]

The table shows the possible roles for CRT in candidate signaling pathways and the probable actions through which the pro-cancer effects are
achieved
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cell carcinoma, CRT works as the upstream regulator of
STAT3 and enhances CTTN transcription which indirectly
accelerates PI3K/Akt pathway and ultimately will increase
the motility of cancer cells and their resistance to anoikis
[66].

Estrogen Receptor Alpha

CRT is believed to reverse estrogen receptor α (ERα) inhi-
bition of invasion through its unliganded mechanism of
action [67]. As mentioned, CRT is also involved in regula-
tion of gene expression through interaction with the consen-
sus motif KxFF[K/R]R located in the DNA binding domain
of all nuclear receptors [67]. In estrogen receptors, this motif is
necessary for the binding specificity of the estrogen receptor
element [68]. In breast cancer cells, CRT is a potential
regulator of ERα function where it prevents ERα activity
of estrogen independent inhibition of invasion and therefore,
it possibly activates invasion by blocking ERα linkage
[69].

Calcium, Cell Motility and Calreticulin

Calcium regulates various aspects of amoeboid cell motility
and induces the membrane localization of myosin II which
ultimately leads to an efficient cellular migration [70]. Cel-
lular speed is mainly regulated by calcium release from
internal stores and its entrance through the plasma mem-
brane [71]. In addition, KCa2.3 channels (the calcium-
activated, voltage-gated SK3 potassium channel) which
functions as a major regulator of Ca2+transport through
the cell membrane are important contributors to malig-
nant cell motility [72]. Hence, regulation of intra-cellular

calcium is a major determinant in the process of cellular
migration [73]. As mentioned, CRT has a key role in
calcium binding and buffering [1] by acting in various
processes that interacts with calcium homeostasis includ-
ing intra-ER Ca2+storage [74], Ca2+release from the ER
[74, 75] and SERCA function [76]. In addition, CRT has
been shown to activate the process of store-operated
Ca2+influx in HeLa cells [77]. Taken together, CRT
can possibly induce cell migration and malignant inva-
sion through its effects on intra- and extracellular calci-
um homeostasis.

TSP1-CRT-LRP1 Signaling Pathway

Thrombospondin 1 (TSP 1) is a major regulator of cellular
adhesion and motility [26] and these effects are achieved
through the attachment of its N-domain to the CRT-LRP1
(low density lipoprotein receptor-related protein) receptor
co-complex [78]. This will ultimately lead to down regula-
tion of signals involved in cell adhesion and finally increase
cell motility via disassembly of focal adhesions. In mouse
embryonic fibroblasts, TSP1-CRT-LRP1 pathway activates
pro-survival signals such as PI3-K and Akt which precedes
the inhibition of apoptosis [26, 79].

Other Pathways

A correlation has been reported between CRTover-expression
and the up-regulation of vascular endothelial growth factor
(VEGF) in gastric cancer cells at both mRNA and protein
levels [43]. This proangiogenic role could be a possible mech-
anism of CRT-dependent invasive and metastatic potential in
cancers. Finally, breast cancer patients with CRT over-

Fig. 2 Cancer related functions
of calreticulin. CRT is proposed
to contribute to the course of
cancer through different
functional pathways which will
ultimately lead to increased
cancer cell proliferation,
migration and survival.
Therefore, CRT induces cancer
invasion and metastatic
processes
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expression have shown a greater risk in the post-operative
course of treatment. Interestingly, the risk for development of
post-operative distant metastasis in breast cancer patients with
CRT over-expression is much higher when the tumors were
also positive for the expression of Her2/neu [45], suggesting
Her2/neu as another possible target or contributor to the CRT
pro-malignant effects.

Summary

CRT has a broad spectrum of functions in the ER, nucleus,
cytosol, as well as outside the cell. While, calcium homeosta-
sis and chaperoning are the most important CRT functions
inside the ER, cell adhesion and regulation of gene expression
seem to be its most important extra-ER functions. In addition
to its physiological roles, CRT over-expression or its absence
are linked to various pathological conditions such as malig-
nant evolution and progression. Evidence from numerous
studies suggests that CRT overexpression is a protumorigenic
event in various cancers. However the exact role(s) of CRT is
yet be clarified due to its diverse interactions into various
cellular processes and signaling pathways. With the use of
high-throughput global profiling platforms, further elucida-
tion is possible. Future work should be focused on delineating
the mechanisms involved in pro-malignant and pro-invasive
effects of CRT as well as determining the probable interacting
genes and signaling pathways.
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