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Abstract Cancer epidemiology has undergone marked
development since the nineteen-fifties. One of the most
spectacular and specific contributions was the demon-
stration of the massive effect of smoking and genetic
polymorphisms on the occurrence of bladder cancer. The
tobacco carcinogens are metabolized by various xenobiotic
metabolizing enzymes, such as the super-families of N-
acetyltransferases (NAT) and glutathione S-transferases
(GST). DNA repair is essential to an individual’s ability to
respond to damage caused by tobacco carcinogens. Alter-
ations in DNA repair genes may affect cancer risk by
influencing individual susceptibility to this environmental
exposure. Polymorphisms in NAT2, GST and DNA repair
genes alter the ability of these enzymes to metabolize
carcinogens or to repair alterations caused by this process.
We have conducted a case-control study to assess the role of
smoking, slow NAT2 variants, GSTM1 and GSTT1 null, and

XPC, XPD, XPG nucleotide excision-repair (NER) genotypes
in bladder cancer development in North Tunisia. Taken alone,
each gene unless NAT2 did not appear to be a factor affecting
bladder cancer susceptibility. For the NAT2 slow acetylator
genotypes, the NAT2*5/*7 diplotype was found to have a 7-
fold increased risk to develop bladder cancer (OR=7.14; 95%
CI: 1.30–51.41). However, in tobacco consumers, we have
shown that Null GSTM1, Wild GSTT1, Slow NAT2, XPC
(CC) and XPG (CC) are genetic risk factors for the disease.
When combined together in susceptible individuals compared
to protected individuals these risk factors give an elevated OR
(OR=61). So, we have shown a strong cumulative effect of
tobacco and different combinations of studied genetic risk
factors which lead to a great susceptibility to bladder cancer.
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Predisposition

Introduction

The chain of events from environmental exposures to
cancer requires hundreds of polymorphic genes encoding
proteins involved in the transport and metabolism of
xenobitics, or in DNA repair, or in immune or inflammatory
response [1]. Once introduced into organism, these xeno-
biotics are bio-transformed by several enzymes.

The xenobiotic-metabolizing machinery includes oxida-
tive enzymes (phase I), which generally activate com-
pounds that become carcinogenic and phase II conjugating
enzymes, considered mainly protective since they detoxify a
number of reactive chemical carcinogens [2]. The conjugating
process (phase II) is controlled by the super families of
glutathione S-transferases and N-acetyltransferases enzymes.
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Genetic polymorphisms affecting these enzymes can modify
their activity with an effect on individual susceptibility for
cancers which are induced by DNA damage [3].

The absence of GSTM1 activity is due to a homozygous
deletion in the GSTM1 gene (GSTM1*0 or GSTM1 null
genotype). Subjects lacking GSTM1 are at increased risk of
cancer, particularly lung and bladder cancer that are
environmentally-related cancers [4, 5].

Lack of GSTT1 enzyme activity has been reported in
several studies as associated with increased risk for bladder
and lung cancers [6, 7]. However, some studies reported
that the risk of cancer was increased only among those with
the GSTT1 positive (wild-type) genotype [8, 9].

The N-acetyltransferase (NAT) enzymes catalyze the N-
acetylation of aromatic amine, which is considered a
detoxifying process, expressed in multiple tissues, such as
the bladder urothelium [10, 11]. A number of single
nucleotide polymorphisms (SNPs) have been reported in
the NAT2 coding region. NAT2*4 is considered the “wild-
type” allele or haplotype. The genetic alterations underlying
the NAT2 polymorphism have been correlated with decreased
NAT2 enzyme activity [12].

Indeed, the presence of one or 2 wild-type alleles results
in a rapid or an intermediate acetylator phenotype, whereas
carrying two mutant alleles results in a slow acetylator
phenotype. NAT2 alleles containing the 191G>A
(NAT2*14), 341T>C (NAT2*5), 590G>A (NAT2*6), or
857G>A (NAT2*7) SNPs are the slow acetylator NAT2
variants. The slow acetylator phenotypes were found to
have an increased risk of bladder cancer among cigarette
smokers [13, 14]. Indeed, smokers who are NAT2 slow
acetylators have higher levels of 4-aminobiphenyl (ABP)
hemoglobin adducts [15, 16]. Furthermore, ABP-DNA
adducts in high grade bladder tumors are found at higher
levels in smokers who are slow NAT2 acetylators [17, 18].

The alterations caused by carcinogens exposure are
generally removed by DNA repair enzymes to assure
DNA integrity. The nucleotide-excision repair (NER)
pathway has been reported to be the most significant
modulator of bladder cancer risk, with other pathways
playing less prominent roles [19]. Polymorphisms in NER
genes may cause variations in DNA repair capacity and
increase susceptibility to bladder cancer through complex
gene–gene and gene–smoking interactions [20].

Xeroderma pigmentosum complementation group C, D
and G polymorphisms (XPC Lys939Gln, XPD Lys751Gln
and XPG Asp1104His, respectively) has been hypothesized
to have a role in bladder cancer risk, but results from prior
molecular epidemiologic studies and genotype-phenotype
analyses are conflicting [21–25]. The most important result
in Caucasian population that has been reported in associ-
ation with increased risk of bladder cancer was the mutated
homozygous Lys939Gln for XPC [22].

In Tunisia, bladder cancer is the most prevalent cancer of
the uro-genital tract and the second most frequent cancer
affecting men [26]. This type of disease is typically of
multi-factor origin with the additive effect of low pene-
trance genes and environmental factors. Combination of
these factors might change between subjects and from one
population to another.

Bladder cancer is a pertinent model to study such genetic
and environmental factors interaction. In order to concretely
illustrate this concept, we performed a case-control study
with the aim of investigating the combined effect on
bladder cancer of selected variations in two different
pathway genes GSTM1, GSTT1, NAT2, XPC, XPD and
XPG according to tobacco smoking in the Northern
Tunisian population.

Material and Methods

Subjects

A total of 125 patients with bladder urothelial cell
carcinoma (UCC) and 125 healthy controls were included
in the present study. Patients were recruited from the
Department of Urology at the Charles Nicole Hospital in
Tunis. All were from North of Tunisia, 90% of them were
men and their mean age at diagnosis was 67.14±9.5. The
control group consisted of non-related healthy subjects
without history of malignant disease who were matched to
those in the case group for gender proportion, geographic
origin, and age. Smoking status information was available
for all controls and only for 109 patients. Under informed
consent, peripheral blood samples were collected into tubes
with EDTA (pH 8).

DNA Preparation and Genotyping

Genomic DNA was extracted from leukocytes using a
phenole/chloroform procedure [27]. The quality of genomic
DNAwas controlled by electrophoresis on a 1% agarose gel
stained with ethidium bromide. GSTM1 and GSTT1 null
alleles were identified using a multiplex-polymerase chain
reaction (PCR)-based method as described by Arand et al.
[28]. For NAT2, a PCR was carried out as described by
Hsieh et al. [29]. The whole intronless NAT2 gene resulted
in 1093-base pair amplification. It was then digested with 5
U of KpnI (Promega), 10 U of BamHI (Promega), 5U of
TaqI (Promega) and 10U of AluI (Promega), to reveal
NAT2*5, NAT2*7, NAT2*6, and NAT2*14 alleles, respec-
tively. Digestion was performed overnight at 37°C for
KpnI, BamHI, and AluI and at 65°C for TaqI. The obtained
fragments were separated in 2% agarose gel. Individuals
with 2 wild alleles (NAT2*4/*4) were classified as rapid
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acetylators, whereas the others were classified as interme-
diate acetylators when they had one mutant allele, and as
slow acetylators when they had 2 mutant alleles including
NAT2*5, NAT2*6, NAT2*7, or NAT2*14 [30, 31].

Polymorphisms for XPC Lys939Gln, XPD Lys751Gln
and XPG Asp1104His are detected by PCR followed by
digestion with PvuII, PstI and Hsp92II enzymes (Promega),
respectively. Digestion was performed during 4 h at 37°C
for all enzymes and the obtained fragments are separated in
2.5% agarose gel. Primers used in this study have been
previously described [32, 33].

Statistical Analysis

Relative risks were estimated by calculating the odds ratios
(OR) with 95% confidence intervals (CI) at the 0.05 (χ2 test
with Yates’ correction, and Fisher’s exact test) significance
level [34]. Departures from Hardy-Weinberg equilibrium were
tested using the software package Arlequin (version 3.01).

Results

Among the bladder cancer patients, 16% (20/125) were non-
smokers and 71.2% (89/125) used 20 packs a year or more.
Among the control group, 53.6% (67/125) were non-smokers
versus 46.4% (58/125) smokers (Table 1). The comparison of
patients and control group according to tobacco status shows
that smoking is a risk factor for bladder cancer development
(p=9.5 10−6; OR=3.99; CI 95% 2.08–7.69).

Genotype distributions for GSTM1, GSTT1, NAT2,
XPC, XPD and XPG in 125 bladder cancer cases and 125
controls are summarized in Table 1. The distribution of
GSTT1, GSTM1 null genotypes (GSTM1*0 and
GSTT1*0), SNPs of the NAT2 gene and XPC, XPD and
XPG variations among both groups were in agreement with
the Hardy-Weinberg equilibrium.

Frequencies of the GSTM1 null genotype in the control
group and bladder cancer cases were 44.8% and 50.4%,
respectively (Table 1). The comparison of GSTM1*0
frequencies in the groups of patients and controls did not
show a significant statistic difference (p=0.44). Study of
the combined effect of smoking and GSTM1 genotypes in
bladder cancer cases and controls suggests that smokers
with the GSTM1 null genotype were at 6.40-fold increased
risk for developing bladder cancer when compared to non-
smokers carrying the wild-type GSTM1 genotype (Table 2).
Frequencies of the GSTT1 null genotype in the control
group and bladder cancer cases were 30.4% and 24%,
respectively (Table 1). As the GSTM1*0 variant, the
GSTT1*0 polymorphism did not appear to be a factor for
bladder cancer susceptibility (p=0.31). Studied separately,
XPC, XPD and XPG mutated genotypes did not appear to

affect bladder cancer susceptibility when compared to wild
genotypes as a reference group (p value=0.56, 0.21 and
0.91, respectively).

The frequencies of NAT2*4, NAT2*5, NAT2*6, NAT2*7,
and NAT2*14 variants in the control group as compared
with bladder cancer cases were 51.6% versus 43.2%; 43.6%
versus 48.4%; 2% versus 1.2%; 2.8% versus 5.2%; and 0%
versus 2%, respectively (data not shown). NAT2 genotypes
were categorized as homozygous mutant (slow), heterozy-
gous wild-type/mutant (intermediate), and homozygous
wild-type (rapid). The NAT2 genotype frequencies of the
case group (22.4% rapid, 41.6% intermediate and 36%
slow) were not significantly different from the control
group (32% rapid, 39.2% intermediate and 28.8% slow),
with p values estimated at 0.24 and 0.11 (Table 1). In
contrast, a significant difference in genotypic frequencies
between cases and controls was detected for the NAT2*5/*7
diplotype (p=0.01). This genotype was found to be over-
represented in patients and presented a 7-fold increased risk
of developing bladder cancer as compared to the control
group (OR=7.14; 95% CI: 1.30–51.41).

When patients genotypes were considered according to
tobacco status (Table 2), null GSTM1, wild GSTT1, slow
NAT2, XPC (CC), XPD (AA + AC) and XPG (CC) were
respectively revealed as risk genotypes in smoker patients.
Indeed, the risk value given by smoker status considered
alone is OR=4.

While, smokers harboring separately slow NAT2 or
mutated homozygous genotype for XPC were at 11 to 12-
fold increased risk for developing bladder cancer when
compared to non-smokers with respectively rapid NAT2 or
wild type XPC (Table 2).

To investigate and evaluate the additive effects of these
genetic risk factors, we have shown in Table 3 the
association, according to the smoker status, of multiple
factors simultaneously and with different possible combi-
nations on bladder cancer susceptibility.

Non-smokers, harboring respectively GSTM1wild, GSTT1
null, rapid and intermediate NAT2, XPC (AA + AC), XPD
(CC) and XPG (GG + GC) were supposed to be protected.

Since our studied cancer is a multifactorial pathology
which depends on additive effects of multiple risk factors, a
single factor by itself should be without any effect on
bladder cancer susceptibility. Hence, we supposed that
protected individuals are non-smokers carrying zero to
one (0–1) genetic risk factor. Considered as references,
frequencies of these protected individuals are compared
with those of persons at risk for bladder cancer which are
smokers carrying at least one, two, three, four or five
genetic risk factors.

Our results presented in Table 3 show that the population
number decreases with the increase of risk factors analyzed
simultaneously. We have also found a progressive increase
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in OR, according to the number of analyzed genetic risk
factors. These values of OR were increased from 7.46 to a
maximal value of 61 (p=3 10−5; OR=61.75; CI 95% 5.25–
1711.89) when 4 risk factors were studied simultaneously
in smoker patients.

Discussion

We have undertaken this case-control study to investigate
the combined effect of smoking, slow NAT2, GSTM1 and
GSTT1 null genotypes, XPC, XPD and XPG on suscepti-
bility to bladder cancer in a Tunisian population. In the
control group, our results confirmed the frequency of the
GSTM1 null genotype (GSTM1*0) previously reported for
healthy Tunisians and for the Caucasian population [35,
36]. However, the GSTT1*0 frequency was lower than that

reported for healthy Tunisians and was higher than that
observed in the Caucasian population [35, 36]. Frequencies
of the GSTM1 and GSTT1 null genotypes in the control
group were compared to those found in bladder cancer
cases. Our results indicated that the GSTM1 null genotype
was not associated with bladder cancer susceptibility. When
we stratified patients and controls according to their
smoking status, our data suggested an additive effect of
tobacco and GSTM1 null genotype but the smoking effect
was predominant. This result was in agreement with a
meta-analyses performed by Garcia-Closas et al. [21],
which showed that the GSTM1 null genotype increases
the overall risk of bladder cancer in smokers.

For the GSTT1 gene, our results suggested that the
GSTT1 null genotype was not associated with bladder
cancer risk. Of the published studies, some suggested an
increased risk with the GSTT1 null genotype [13, 37] and

Genotypes Controls (%)
(n=125)

Cases (%)
(n=125)

p a value OR (95%CI)

Smoking status

Non-smoker – 67 20 – 1*

Smoker c – 58 89 9.5 10−6 3.99 (2.08–7.69)

GSTM1 Wild 69 (55.2) 62 (49.6) – 1*

Null 56 (44.8) 63 (50.4) 0.44 –

GSTT1 Wild 87 (69.6) 95 (76) – 1*

Null 38 (30.4) 30 (24) 0.31 –

NAT2

Rapid NAT2*4/*4 40 (32) 28 (22.4) – 1*

Intermediate NAT2*4/*5 42 (33.6) 47 (37.6) 0.19 –

NAT2*4/*6 3 (2.4) 1 (0.8) 0.52 –

NAT2*4/*7 4 (3.2) 3 (2.4) 0.75 –

NAT2*4/*14 0 1 (0.8) 0.87 –

IA Subtotal 49 (39.2) 52 (41.6) 0.24 –

Slow NAT2*5/*5 32 (25.6) 30 (24) 0.51 –

NAT2*5/*6 1 (0.8) 1 (0.8) 0.63 –

NAT2*5/*7 2 (1.6) 10 (8) 0.01 7.14 (1.30–51.41)

NAT2*5/*14 0 3 (2.4) 0.15 –

NAT2*6/*7 1 (0.8) 0 0.84 –

NAT2*6/*14 0 1 (0.8) 0.87 –

SA Subtotal 36 (28.8) 45 (36) 0.11 –

XPC AA 57 (45.6) 53 (42.4) – 1*

AC 52 (41.6) 52 (41.6) 0.89 –

CC 16 (12.8) 20 (16) 0.56 –

Total 125 125 – –

XPD AA 62 (49.6) 65 (52) – 1*

AC 52 (41.6) 55 (44) 0.92 –

CC 11(8.8) 5 (4) 0.21 –

XPG GG 46 (36.8) 48 (38.4) – 1*

GC 61 (48.8) 56 (44.8) 0.74 –

CC 18 (14.4) 21 (16.8) 0.91 –

Table 1 Tobacco status and
genotype distribution of NAT2,
GSTT1, GSTM1, XPC, XPD and
XPG in bladder cancer cases
and controls from north Tunisia

RA rapid scetylator, IA interme-
diate acetylator, SA slow
acetylator
a Yates correction
* Reference group
c ≥20 packet years
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Tobacco status Genotypes Controls Cases p a value OR (95%CI)

GSTM1

Non-smoker Wild 38 11 – 1b

Null 29 9 0.90 –

Smoker c Wild 31 39 0.0006 4.35 (1.78–10.77)

Null 27 50 7.8 10−6 6.40 (2.63–15.83)

GSTT1

Non-smoker Wild 49 13 – 1b

Null 18 7 0.67 –

Smoker c Wild 38 71 10−7 7.04 (3.22–15.62)

Null 20 18 0.01 3.39 (1.29–9.05)

NAT2

Non-smoker Rapid 21 4 – 1b

Intermediate 26 10 0.44 –

Slow 20 6 0.77 –

Smoker c Rapid 19 19 0.01 5.25 (1.34–22.30)

Intermediate 23 34 0.0006 7.76 (2.12–30.97)

Slow 16 36 3 10−5 11.81 (3.11–48.98)

XPC

Non-smoker AA 31 8 – 1b

AC 25 10 0.59 –

CC 11 2 1.00 –

Smoker c AA 26 39 0.0002 5.81 (2.13–16.33)

AC 27 35 0.0008 5.02 (1.83–14.16)

CC 5 15 0.0001 11.63 (2.80–52.30)

XPD

Non-smoker AA 38 10 – 1b

AC 23 9 0.62 –

CC 6 1 0.91 –

Smoker c AA 24 44 7 10−6 6.97 (2.75–18.06)

AC 29 41 0.0001 5.37 (2.15–13.70)

CC 5 4 0.27 –

XPG

Non-smoker GG 24 7 – 1b

GC 32 9 0.82 –

CC 11 4 0.94 –

Smoker c GG 22 35 0.001 5.45 (1.83–16.81)

GC 29 38 0.003 4.49 (1.56–13.38)

CC 7 16 0.001 7.84 (1.99–32.85)

Table 2 Combined effect of
smoking, xenobiotic and gene
repair enzyme genotypes in
bladder cancer cases and con-
trols

a Yates correction
b Reference group
c ≥20 packs/year

Controls Cases p a value OR

Protected

Non smoker with 0–1 Genetic risk factor 19 4 – 1b

Smokers c with minimum 1 Genetic risk factor 56 88 0.0002 7.46 (2.23–27.49)

Smokers c with minimum 2 Genetic risk factors 39 73 0.00006 8.89 (2.6–33.44)

Smokers c with minimum 3 Genetic risk factors 18 39 0.00009 10.29 (2.73–42.24)

Smokers c with minimum 4 Genetic risk factors 1 13 0.00003 61.75 (5.25–1711.89)

Smokers c with minimum 5 Genetic risk factors 0 1 – –

Table 3 Combined effect of
smoking and the 5 genetic risk
factors of NAT2, GSTM1,
GSTT1, XPC and XPG in blad-
der cancer patients and controls

a Fisher test
b Reference group
c ≥20 packs/year
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others reported no association [38]. In our study, the
comparison of patients and controls according to the
GSTT1 genotype and tobacco status suggested an aggra-
vating effect of wild-type GSTT1 genotype in smokers,
which confirmed the study of Kim et al. [39].

For the NAT2 gene, we have shown that the
frequencies of alleles encoding slow acetylator variants
NAT2*5, NAT2*6, NAT2*7, and NAT2*14 were similar
to that reported for the Caucasians populations [40].
Globally, the NAT2 slow acetylator in our control group,
collected in the North of Tunisia, was 28.8%. This value is
lower than that reported in other studies on the middle
coast of Tunisia (49.7%) [41] and also lower than that
observed among American Caucasians [42]. The compar-
ison of the slow NAT2 frequency in controls to that
reported for patients without stratification did not show a
significant statistic difference (p=0.19). A significant
difference in genotypic frequencies between cases and
controls was only detected for the NAT2*5/*7 diplotype
(p=0.01). This genotype was found to be over-represented
in patients and presented a 7-fold increased risk of
developing bladder cancer compared to the control group.
This association could be explained by the presence of the
NAT2*5 haplotype. Indeed, some studies found that
bladder cancer risk was high in individuals possessing
NAT2*5 haplotypes [13, 43]. The 341T>C (I114T) SNP
associated with NAT2*5 alleles or haplotypes yields a very
large reduction in NAT2 activity [44] resulting from
protein degradation [45]. However, we have reported that
the homozygous genotype of NAT2 (NAT2*5/NAT2*5)
was not associated with an increased risk of bladder
cancer, which suggested that the NAT2*5 haplotype would
act preferentially in association with the NAT2*7 haplo-
type. N-acetylation is considered as a major detoxification
step for carcinogenic aromatic arylamines. The compari-
son of patients and controls according to the NAT2
genotype and tobacco status has shown a significant
statistical difference which was in agreement with several
other results [13, 14, 46]. These studies reported that in
smokers, slow NAT2 increases the quantity of
electrophilic-active products which induces local somatic
mutations in oncogenes and/or anti-oncogenes, initiating
tumoral progression.

For XPC, XPD and XPG mutated alleles; frequencies
were reported for the first time in Tunisia and estimated at
33%, 29%, and 38%, respectively (results are submitted).
These frequencies were higher than those reported in
Caucasian and American population [22, 24]. The compari-
son of patients and controls according to XPC, XPD and
XPG genotypes without any stratification did not show any
significant statistical differences. However, according to
tobacco status, important significant difference in genotypic
frequencies between cases and controls was detected for

smokers carrying mutated homozygous genotype for XPC
compared to the reference group (p=0.0001, OR=11.63; CI
95%: 2.80–52.30).

Xeroderma pigmentosum type C (XPC) encodes an
important DNA damage recognition protein that binds to
damaged DNA at a very early stage during DNA repair
[47]. Our result confirmed other studies previously reported
on XPC polymorphism association with bladder cancer [22,
48].

Bladder cancer is a multifactorial pathology; it seems
that several genetic risk factors are involved in the
development of the disease. Hence, one single factor
alone should be without influence and should not affect
bladder cancer susceptibility. In our case-control study,
we have compared genotypic frequencies of the differ-
ent studied genes between protected individuals (non-
smokers carrying zero to one genetic risk factor) and
individuals at risk (smokers with at least one, two,
three, four or five genetic risk factors). We have
concluded that more a subject presents risk factor more
the susceptibility to the disease increases as shown by
OR increasing value. The simultaneous association of 5
risk factors along with cigarette smoker status gives a
very high probability to develop bladder cancer. This
result can be explained by the fact that persons who are
exposed to high intensity of tobacco carcinogens are unable to
detoxify these components especially if they carry altered
xenobiotic enzymes, and are unable to eliminate mutations
caused by DNA adducts if they present in addition an altered
DNA repair enzymatic pathway.

According to our results, smoker status, NAT2 slow and
intermediate genotypes, the GSTT1 wild-type allele,
GSTM1 null genotype, XPC and XPG mutated genotypes
are additive factors leading to bladder cancer. Mainly most
of our patients present at least one of the studied risk
factors, but the risk for bladder cancer increases with the
number of accumulated risk factors.

Smoker status is the main environmental risk factor,
however, in our study some patients with bladder cancer
were non smokers or low smokers, among whom, four non-
smoker persons were without or with only one genetic risk
factor (Table 3) indicating that some other factors, that we
have not investigated yet, could be involved in the bladder
cancer.

Indeed, according to previous results, we have shown
that polymorphism in genes encoding enzymes implicated
in folate metabolism are also risk factor for bladder cancer
[49].

In conclusion, to our knowledge, this is the first study
achieved in Tunisia and particularly in North Tunisia
presenting evidence that the risk of bladder cancer was
very high for smokers having the association of 4 genetic
risk factors involving different enzymatic pathways.
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