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Abstract Several viruses can pass the maternal-fetal
barrier, and cause diseases of the fetus or the newborn.
Recently, however, it became obvious, that viruses may
invade fetal cells and organs through different routes
without acute consequences. Spermatozoa, seminal fluid
and lymphocytes in the sperm may transfer viruses into the
human zygotes. Viruses were shown to be integrated into
human chromosomes and transferred into fetal tissues. The
regular maternal-fetal transport of maternal cells has also
been discovered. This transport might implicate that
lymphotropic viruses can be released into the fetal organs
following cellular invasion. It has been shown that many
viruses may replicate in human trophoblasts and syncytio-
trophoblast cells thus passing the barrier of the maternal-
fetal interface. The transport of viral immunocomplexes had
also been suggested, and the possibility has been put
forward that even anti-idiotypes mimicking viral epitopes
might be transferred by natural mechanisms into the fetal
plasma, in spite of the selective mechanisms of apical to
basolateral transcytosis in syncytiotrophoblast and baso-
lateral to apical transcytosis in fetal capillary endothelium.
The mechanisms of maternal-fetal transcytosis seem to be
different of those observed in differentiated cells and tissue
cultures. Membrane fusion and lipid rafts of high choles-
terol content are probably the main requirements of fetal

transcytosis. The long term presence of viruses in fetal
tissues and their interactions with the fetal immune system
might result in post partum consequences as far as
increased risk of the development of malignancies and
chronic pathologic conditions are discussed.
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Abbreviations
AAV adeno-associated parvovirus
CXCR-4 co-receptor of HIV (chemokine receptor)
CXCL-12 chemokine receptor
EBV Epstein-Barr virus
Env viral envelope
FcR Fc-receptor
HBV hepatitis B virus
HCMV human cytomegalovirus
HCV hepatitis C virus
HERV human endogenous retrovirus
HHV-1–8 human herpesvirus types 1 to 8
HIV human immunodeficiency virus
HLA-G unusual transplantation antigen
HTLV-1–3 human T-cell leukemia virus types 1 to 3
HPaV human papillomavirus
HPV-B19 human parvovirus B-19
HPyV human polyomavirus
HSV herpes simplex virus
KSHV Kaposi’s sarcoma herpesvirus
miRNA micro (regulatory) RNA
NEF regulatory factor of HIV
PCR polymerase chain reaction
SCD-1 stromal cell derived factor-1
SV-40 simian (polyoma) virus “40”
TTV “transfusion transmitted” Anellovirus
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Introduction

Viruses, which may cause illnesses of the fetus have been
reviewed by several authors in the past [55, 63, 70, 80, 81,
91, 166]. Rubella [71], measles [55, 81], Togaviruses [63],
Flaviviruses [80], hepacivirus (HCV) [112], Hepadnavi-
ruses (HBV) [19, 212, 223], human immunodeficiency
virus (HIV) [21, 101, 169, 204, 205], human cytomegalo-
virus (HCMV) [45, 56, 66, 197, 226, 230], human
herpesvirus types 1 (HSV) [6], 6 (HHV6) [5, 12, 173,
197], 7 (HHV7) [70, 152] and 8 (HHV8) [222], human
parvovirus B19 (HPV-B19) [40, 74, 139], dependovirus
(AAV) [25], human adenovirus [95, 96], Epstein-Barr virus
(EBV) [5, 44, 222], human papillomaviruses (HPaV) [3, 4,
60, 183, 222], human polyomaviruses (HPyV) [10],
lentiviruses [193] and the Anellovirus TTV (Dencs, A.,
Csire, M. and Takács, M. unpublished results) were shown
to be able to infect the placenta or cells of fetal origin. The
consequence may be accidentally the impairment of fetal
development and/or the illness of neonates or children.

The aim of this work was to review recently discovered
molecular mechanisms enabling viral infection of the
placenta and the transplacental transfer of viruses to the
fetus in contrast to the perinatal infection of neonates
during delivery [20–22, 147, 212].

There are two barriers separating the maternal tissues
from the fetal circulation. Syncytiotrophoblast is the 1st one
and the endothelial cells of the fetal blood vessels in the
microvilli is the second one through which viruses have to
be transported [110, 111, 178, 192] in order to cause fetal
infection.

Vertical Transmission of Viruses (Perinatal
or Transplacental?)

Thirty years elapsed until the original idea could be proven,
that the germ cells may transfer viral genes or viral
genomes into the zygote [10, 207]. The first example of
the presence of HHV6 in the nuclei of human cells and
their transmission to the descendants according to the
Mendelian rules (Peter Medveczky, unpublished) has been
proven recently [14, 39, 206–209]. About 2 % of the HHV6
subtype “A” carrier persons harbour the viral genome in the
germline, too [207–209]. In some individuals, however,
chromosomal integration can be detected in many, but not
in all cells of the body [113]. It has to be mentioned, that
conventional perinatal or transplacental HHV6 transmission
is also present in the population [228]. Some findings might
suggest that human parvoviruses can be transmitted
vertically via zygotes [139], too.

For the examination of semen new developments of
molecular techniques were required and the validation of

the laboratory procedures had to be done because of the
mucopolysaccharide content of semen and because of the
presence of other substances inhibiting the polymerase
chain reaction [154]. These substances were shown not to
interfere with the in situ hybridisation techniques, which
also allowed the examination of viruses present in the
ejaculate. Viruses were found to be associated with
spermatozoa [10, 11, 33, 97, 129, 130, 154, 194, 215]
identified in the semen or seminal plasma and in genital
secretions of women [7, 18, 19, 29, 38, 48, 50, 69, 76, 78,
86, 104, 143, 179, 219]. Lymphocytes of semen might also
contain latent viruses [214–216] similar to the KSHV
detected in prostatic tissues [129, 195]. The listed data are
summarised in Table 1.

Seminal plasma was found to induce proliferation and
differentiation of B cells [105] thus potentially reactivating
lymphocyte-associated latent herpesviruses. The expression
of envelope proteins of endogenous C type retroviruses was
also induced on the membranes of oocytes following
fertilisation [138]. On the basis of the results listed one
may conclude that viruses can be present in all or in several
cells of the early developmental stages of the human
embryos. It has been discovered recently, that the induction
of syncytiotrophoblasts is regulated by the product of the
syncytine gene coded by an endogenous human retrovirus
[126].

The Perinatal Transmission and Transplacental
Transfer of Viruses could be Differentiated
only Recently

Reactivation of different viruses has been observed in
connection with the modulation of the maternal immune
system during pregnancy. The perinatal infection of the
newborn babies has been recognised first in the case of
papillomaviruses [27, 38, 164, 165, 174], herpesviruses
[12, 50, 70, 112, 143, 152, 196, 197], TT virus [29],
hepatitis B virus (HBV), HIV and hepatitis C virus (HCV)
[112, 117, 147, 169] during delivery. Molecular character-
isation of viruses in sexual partners [196] and that in the
parents and neonates [102, 165, 183, 196, 197] supported
perinatal transmission, too.

The probability of transplacental transmission of HBV
[212] cannot be more than 0.9 % in Hungary, since the
perinatal infection of the neonates can be prevented in 99%
by active and passive immunisation of them immediately
upon birth [185].

Evidence has been presented that in a proportion of HIV-
infected pregnants, the quasispecies of the fetal virus was
significantly different from that harboured by the mother
[101, 169]. This phenomenon can only be explained by the
transplacental transmission of HIV followed by an inde-
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pendent evolution of fetal and maternal variants of the
quasispecies. The transplacental transmission was found to
be facilitated by homozygosity of certain genes for example
that of HLA-G [1, 100, 156]. Transplacental transmission
was increasing when interleukin and TNF alpha [147, 151]
production were found to be enhanced in the placental
tissues due to inflammation [21]. The production of
facilitator molecules can probably be stimulated by the
increase of toll-like receptor-4 during gestational aging [59,
194], which was shown to react with endotoxins.

A series of publications reported the presence of viral
nucleic acids in fetal hydrops (HHV6) [5] or in the amniotic
fluid, cord blood and neonatal blood samples (Papilloma-
viruses [3, 4, 166, 222], herpesviruses [6, 63, 66, 113, 114,
152, 206, 222], HBV [20], AAV [25, 40], rubellavirus [71],
and TTV Anellovirus [Csire M., Dencs A., Takács M.
unpublished]) taken immediately following parturition.

In contrast to the previous findings an exceptional multiple
PCR screening [121] of amniotic fluid samples taken in the
first trimester of symptomless pregnancies was unable to
detect the presence of any viral DNA. Several possible
reasons might explain the findings of the authors. 1.)
Ontogenetic differentiation of the fetal tissues may probably
facilitate penetration of viruses without clinical consequences
only in the second half of the pregnancy [45, 56, 65]. 2.)
Because of the different metabolism, the presence of viruses
resulted in abortion and therefore in healthy pregnancies no
viral DNA could be detected in samples taken within the first
trimester. 3.) The viral DNA, if present, was probably within
or adsorbed to the cells of the amniotic fluid, since it
contains soluble lactoferrin, which would inactivate papil-
lomaviruses or polyomaviruses [46, 51, 145].

Later, however, the majority of viral DNA was detected
in the meconium and cell debris of the amniotic fluid
samples [222] taken at birth at the end of normal
pregnancies.

Indirect Observations Supporting the Transplacental
Transmission of Viruses in Healthy Pregnancies

Two additional indirect observations supported the exis-
tence of transplacental transmission of papillomaviruses
and that of Kaposi’s sarcoma herpesvirus into the fetal
tissues without any clinical consequences. In elderly
patients, suffering from cancers of the head and neck, early
protein E6 coded for by papillomavirus 16, but no late
proteins were expressed in non-tumorous cells (neural
structures and endothelial cells) [60] of the patients. This
finding might indicate, that the infection had to occur early
in fetal ectodermal or mesodermal stem cells and only the
expression of early proteins was possible in the absence of
DNA replication upon birth when neural structures do not
replicate any more.

Another finding which supported exposition of the fetal
immune system to viral proteins was the peculiar difference
in the serological response of patients directed to antigens
of KSHV in contrast to those of HCMV, EBV and HHV6 in
myeloma multiplex and B-cell lymphoma patients [34].
Humoral immune response was present in the case of
patients positive for the DNA of HCMV, EBV and HHV6.
In contrast to these only 5 of 40 patients, who had viral
DNA in the white blood cells detected by nested PCR, were
able to produce detectable serological response to KSHV-

Virus species in semen or
prostatic tissues

Virus isolation or
immuno-fluorescence

PCR In situ
hybridisation

HSV [33] [7, 19, 52, 86, 179, 219] [48, 97]

HCMV [7, 18, 19, 33, 86, 216, 219]

HPaV [7, 19]

HPyV [10]

EBV [18] [18, 19, 86]

HHV6 [19, 39] [39, 113, 208]

HHV8 [69, 75, 78, 130, 154, 195] [11, 78, 129]

Adenovirus [33] [10]

Virus in female genital tract

HSV [48]

HCMV [219]

EBV [18] [50]

HHV6 [12, 143, 208]

HpaV [38, 164] [38]

HHV8 [104, 194]

TTV [29]

Table 1 References on viruses
detected in semen, prostate and
in genital secretions of women
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specific antigens [34]. The absence of humoral immune
response might indicate fetal exposure to KSHV antigens
similar to “self” antigens during the ontogenesis of the fetal
immune system [54, 123].

One cannot exclude the possibility that viruses can be
vertically transmitted by the germ lines, through the
placenta and perinatally during delivery. How can the
transplacental transmission occur?

Replication of Viruses in Fetal Tissues In Vitro
and In Vivo

Fetal syncytiotrophoblast cells form the maternal-fetal barrier.
Both cytotrophoblast cells and syncytiotrophoblast cultures
were shown to support the growth of HCMV [8, 56, 81, 114,
115, 190, 198], HIV1 [9, 13, 35], HHV6 [14, 35], HSV1
[176], HTLV1 [198, 199], EBV [199] and HPV-B19 [74,
211]. In spite of the fact, that trophoblast cells do not express
CD4 [225] receptors only the CXCR4 co-receptor of HIV1,
the cells could be infected with the virus [204, 205, 217]. In
addition to these trophoblast cells were shown to be resistant
to the effect of alpha interferon, which could reduce virus
replication [32]. Human trophoblast cells could also be
infected with adenovirus recombinants [95, 96].

Receptors for herpesviruses are present on fetal cells. These
receptors are the complement receptor CD21 for EBV [76],
the cystine transporter CD98 for KSHV [47, 85, 98],
integrins for HCMV [49, 53, 86, 88–90] which are also co-
receptors for AAV [16, 188], ganglioside GD1a for
polyomavirus [64], CD46 for HHV6 [70], globoside receptor
(erythrocyte P antigen) and Ku80 co-receptor for HPV-B19
[87, 91, 133, 134, 167, 211, 213] heparan sulfate proteogly-
can for AAV and Papillomaviruses [187, 221], laminins for
Papillomaviruses and Alphaviruses [84, 183, 186].

Herpesviruses penetrate the target cells by membrane
fusion. The genetic basis for the fusion of the cell membrane
and the viral envelopes is carried on the gene of glycoprotein
gB. This part of the viral gB glycoprotein was shown to be
related to the disintegrin metalloproteases [53, 93, 200].

Herpesviruses, however, were shown to possess the
property to cause “fusion from without” of the cellular
membranes. This property of the virus means that the
membrane fusion can occur without expression of viral
genes and multiplication of the viruses [89, 93, 122, 131,
153, 171, 182, 202, 226] is not required. The penetration of
parvoviruses is facilitated by the phospholipase A activity
of the virus and conformational changes of the capsid
proteins [87, 167]. Thus the penetration of the syncytio-
trophoblast by herpesviruses is a plausible phenomenon as
shown by many ex vivo experiments [8, 198].

The infected cytotrophoblasts, however, downregulate
adhesion and immune molecules required for invasive-

ness and maternal immune tolerance. Expression of
metalloproteinase-9 was shown to be reduced and degra-
dation of the extracellular matrix was impaired [190].
Cell surface proteins (i.e. E-cadherin, VE-cadherin, HLA-G,
and HCMV receptors, epidermal growth factor receptor,
integrins beta1, 6, alphaV-beta3 and alpha9) were expressed
following infection of purified cells. HCMVreplication in late
gestation placentas with considerable reserves could deplete
cytotrophoblast progenitors, thereby impairing syncytiotro-
phoblast development and increasing the risk of virus
transmission to fetal blood vessels [190]. The infection of
human microvascular endothelial cells requires the sustained
expression of NF-kappa-B in order to support gene
expression of Kaposi’s sarcoma herpesvirus [172]. In
contrast to the consequences of HCMV infection, stromal
cell-derived factor-1 (SDF-1) may prolong trophoblast cell
survival [82].

The Maternal-fetal Barrier and Immunomodulation
of the Mother

Transplacental transmission of fetal cells into the maternal
circulation is a well known phenomenon, which has been
reviewed recently [17, 92]. The molecular barrier between
the fetal and maternal tissues was shown to be the HLA-G
antigen, which possesses 7 exons and it is preventing the
activation of the maternal cellular immune response by fetal
antigens. The expression of HLA-G on fetal cells trans-
ferred into the maternal circulation is one of the factors
enabling survival of them for years without the activation of
maternal immunity [79, 178].

The non-classical HLA-G, however, may be expressed
on different other cell types, too [142]. Cytomegalovirus
could induce the degradation of cellular HLA-G1, but the
soluble form of the antigen was unimpaired by HCMV
infection [15]. The US3 and US6 gene products were
responsible for the downregulation of MHC class I genes of
the trophoblasts [83]. HCMV was coding for a viral HLA
class I homologue (UL18), which inactivated the Ig-like
inhibitory receptor of the cells (CD85j), thus protecting
infected cells against NK cell attack [28], in contrast to the
induction of HLA-G expression caused by HCMV in
Guillain-Barré syndrome [148].

HIV-1 was also able to downregulate the non-classical
MHC class I molecule HLA-G1 [42, 156]. HLA-G antigens
were also induced under certain conditions in B lympho-
cytes immortalised by Epstein-Barr virus [61]. Neurotropic
viral infections modulate HLA-G expression preventing the
effective immune defense mechanisms of the patient [100,
124]. Soluble HLA-G was found to support renal graft
acceptance in transplant recipients [160]. In contrast to
these HLA-G expression on the surface of cells of chronic
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lymphatic leukemia was shown to be associated with
unfavourable outcome [141]. Thus, HLA-G is responsible
for immunomodulaton of a series of compromising mater-
nal immune functions including those directed to virus-
infected or virus-carrier cells.

Cellular infection with herpes simplex virus (HSV) and
human cytomegalovirus (HCMV) were each associated
with the downregulation of surface expression of HLA-A
and HLA-B. The effects of HSV and HCMV infection on
HLA-G and HLA-C in the trophoblast have revealed
similarities and surprising differences between trophoblasts
and classical MHC class I products [176–178].

HLA-G was selectively presenting different epitopes.
Epstein-Barr virus-induced gene 3 (EBI3) encodes a soluble
hematopoietin receptor related to the p40 subunit of
interleukin-12. EBI3 was shown to be expressed at high
levels in full-term placenta. EBI3 levels were strongly up-
regulated in sera from pregnant women and gradually
increased with gestational age. It is an important immuno-
modulator in the fetal-maternal relationship, possibly
involved in NK cell regulation [44, 168].

Transfer of Whole Maternal Cells into Fetal Tissues

It has been discovered recently that the maternal-fetal
barrier can be passed by maternal cells including lympho-
cytes in spite of the hermetic separation by syncytiotropho-
blast layer and HLA-G protection [65, 91, 155]. Pathologic
conditions may facilitate or induce the transfer of maternal
cells [75, 125]. This phenomenon may represent an
alternative way for lymphotropic viruses to pass the
maternal-fetal barrier, since one of each million maternal
lymphocytes harbours latent herpesviruses. The transfer of
such cells might result in the reactivation of herpesviruses
in the fetal tissues. Under certain immunosuppressive
conditions the heterogeneity of maternal B lymphocyte
population has been shown to be impaired [37]. It is
hypothesised that under such conditions the frequency of
transferred maternal B-lymphocytes harbouring latent beta
or gamma herpesviruses might be elevated, as suggested by
a series of publications in connection with the transplacen-
tal transfer of hepatitis B virus [20, 212]. The transport of
human parvoviruses seems to be also very probable by
maternal cells [139].

Apical to Basolateral Transcytosis in Syncytiotrophoblast
and Basolateral to Apical Transcytosis of IgG in Fetal
Capillary Endothelium

It is usually not discussed in general reviews, that maternal-
fetal transcytosis requires two different polarities of trans-

cytosis. The transport across the syncytiotrophoblast is
similar to the apical to basolateral transport of the
molecules observed in the tubuli of the kidney [224], when
the recycling of albumin or recycling of transferrin and
other substances occur in the gut [109, 158]. Albumin
recycling in the placenta was found to be also a clathrin-
mediated process [103]. Dynamin was shown to participate
in the endocytosis of riboflavin in placental trophoblasts
[58]. It is, however, not required for the endocytosis and
transcytosis of HIV-1 [205] in spite of the fact, that it is
required for the uptake of papillomaviruses by keratino-
cytes [174] and it was found to participate in the NEF-
mediated enhancement of HIV-1 infectivity [157].

The transcytosis in the fetal capillary endothelial cells,
however, is a basolateral to apical transcytosis resembling
those of IgA in enteric cells or enzymes in the thyroid cells
or liver cells [73, 116, 201].

Active transcytosis of maternal IgG subclasses 1 and 3
occurs through the fetal barrier into the fetal circulation
throughout pregnancy [23, 57, 181]. Both Fc gamma
receptor I and a distinct Fc gamma RIIIb receptor are
expressed on the surface of syncytiotrophoblasts [114]. In
term villi the receptor is concentrated in the apex of the
syncytiotrophoblast, suggesting a possible role in the
maternal-fetal transmission of passive immunity [23]. All
3 subtypes of Fc-receptors are expressed by the fetal
Hofbauer cells [23].

Fc gamma RIII, however is also expressed (CD16) on
the surface of invasive trophoblasts carrying CXCL12
chemokine receptors attracting natural killer cells to the
maternal-fetal barrier [72, 217, 220]. These chemokine
receptors take part also in the maternal-fetal immune
tolerance and vascular remodelling [220]. In addition to
these functions they can support the replication of multiple
types of human papillomaviruses [221].

The second layer, the villus endothelium, was until
recently thought to allow IgG movement nonspecifically by
constitutive transcytosis in caveolae. Recently it has been
shown, however, that the villus endothelium expressed a
separate FcR for IgG, the inhibitory motif-bearing Fc
gammaRIIb2 seen most notably on macrophages and on a
minor fraction of B cells.

Fc gammaRIIb2 is expressed in an unidentifiable novel
organelle of the villus endothelium, unassociated with
caveolae. About half of these Fc gammaRIIb2 organelles
contain IgG; the remainder lack IgG. These findings are
compatible with Fc gammaRIIb-mediated transfer of IgG
across the villus endothelium, independent of caveolae
[128, 192].

This difference of ligand-induced receptor-mediated
transcytosis is probably due to the different polarities of
transcytoses. The simplified model of the maternal-fetal
transports are summarised in Fig. 1.
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Antibody Facilitated or Inhibited Uptake
and Transcytosis of Viruses

Antibody dependent enhancement of virus infection was
shown in the case of HCMV [114] and HPV-B19 [40, 134].
Under certain conditions an IgG-HCMV complex will be
transcytosed by the neonatal Fc receptors across syncytio-
trophoblasts, infecting underlying cytotrophoblasts in cho-
rionic villi. The infection may occur when the maternal IgG
has a low neutralizing titer. In placental villi, syncytiotro-
phoblasts express the virus receptors, but lack integrin co-
receptors and the virion uptake occurs without replication.
Transcytosed virions will reach cytotrophoblasts that
selectively initiate expression of alphaV integrin [114, 115].

In case the concentration of maternal neutralising anti-
bodies is high, these will prevent antibody facilitated virus
uptake [114]. In spite of the previous observations, HCMV
could be detected in the placenta, amniotic fluid and fetuses
of seropositive mothers [222, 230].

Free HBV was shown to be transcytosed across
trophoblastic cells at a rate of 5% within 30 min. Viral
transport occurred in microtubule-dependent endosomal
vesicles. Additionally, confocal microscopy showed that
the internalized virus traverses a monensin-sensitive endo-

somal compartment. Differentiation of the cytotrophoblasts
to syncytiotrophoblasts resulted in a 25% reduction in viral
transcytosis, suggesting that placental maturity may protect
the fetus. Virus translocation was also reduced in the
presence of HBV-specific immunoglobulin [20]. HHV6 and
HHV7 were found also in the amniotic fluid of seropositive
mothers [222], but the role of antibodies has not been
examined yet.

Biopsy specimens often contain HCMV virion-specific
glycoprotein B and DNA in syncytiotrophoblasts and in
core macrophages of the villi without productive infection.
Focal replication was shown to occur in placentas of
women with low to moderate neutralizing antibody titres
[115].

Possible Transcytosis of Virus-specific anti-idiotype
Antibodies

The possibility, that rheumatoid factors may contain anti-
idiotype antibodies carrying an “internal image” of different
herpesviruses, has been suggested many years ago [119].
The possible role of anti-idiotypic antibodies transported
into the fetal circulation and carrying images of viral

SYNCYTIOTROPHOBLAST

CYTOTROPHOBLAST

VILLUS CORE MACROPHAGES

FETAL CAPILLARY ENDOTHEL

MATERNAL BLOOD (INTERVILLOUS SPACE)

MATERNAL LYMPHOCYTE

HLA-G

SOLUBLE HLA-G
INACTIVE MATERNAL CELLS

Fc-RS

WITH

MATER-
NAL

IgG and

IMMUNE
COMP-
LEXES or
anti-

IDIO-
TYPES

Fc-gamma RIIb RECEPTORS on
CAPILLARY ENDOTHELIAL CELLS DIRECTION OF TRANSPORT

CXCR4

Caveolae

IgG
TRANSPORTERS

Clathrin coated pits

Nuclei

Fig. 1 Receptors and transporters on the microvilli of the fetal
placenta. The maternal blood is separated from the fetal tissues by the
syncytiotrophoblast. The transport through the syncytiotrophoblast
occurs in the apical-basal direction. The outer surface of the
syncytiotrophoblast is covered by HLA-G, which is responsible for
the silencing of maternal cytotoxic cells [43]. Fc-receptors are also
present on the outer surface of the syncytiotrophoblast collecting
maternal IgG for transcytosis into the fetal part of the barrier. Virus-
antibody complexes and anti-idiotypes might be transported by the
transporter vesicles, too. Villus core macrophages take the transporter
vesicles to the fetal capillary endothel cells, where the Fc-gamma-RIIb

receptors take over the IgG and transporter vesicles independent of
caveolae forward the maternal IgG and its complexes into the fetal
blood. The transport through the fetal capillary cells is a basal-apical
transport. Caveolae were shown not to be involved in the IgG
transportation. CXCR4 coreceptors are also present on the maternal
surface of the syncytiotrophoblast preventing its apoptosis regulated
by the ligand CXCL12 (Stromal cell derived factor-1=SCD1)
contributing to the maternal immunotolerance to fetal tissues. Clathrin
coated pits of syncytiotrophoblasts are responsible for the albumin
recycling into the fetal circulation. Maternal lymphocytes are passing
syncytiotrophoblasts by a yet unknown mechanism
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surface antigens had been proposed, too [144]. Recently the
influenza vaccination of pregnant women has been recom-
mended in the United States in the second trimester of
pregnancy. The vaccines used were split- or subunit-
vaccines. One group has tested the influenza specific
immune response detectable in the umbilical blood upon
birth. Surprisingly, IgM-type antibodies specific to the
influenza viral subunits could be detected in a large
proportion of the newborns [162]. These findings might
be considered to be indirect evidence that anti-idiotype
antibodies were transported into the fetal circulation and
induced the formation of influenza subunit-specific fetal
IgM [162]. It is very unlikely, but it cannot be excluded that
viral glycoproteins might be transcytosed in the form of
immunocomplexes into the fetal circulation by the above
mentioned mechanism, too.

The presence of anti-idiotypes causing immuno-
modulation has been suggested previously in human
intravenous gamma globulin preparations [163]. Therefore,
the question will remain open against which epitopes the
fetal immune system produced the virus-specific IgM
molecules.

Antibody Independent Transcytosis of Viruses
into Normal or Tissue Culture Cells

In normal tissue culture cells polyomavirus JCV enters cells
by clathrin-dependent endocytosis and it is transported
immediately to early endosomes. It is then sorted to a
caveolin-1-positive endosomal compartment. This latter step
is dependent on Rab5-GTPase, cholesterol, caveolin-1, and
pH. JCV enters cells by clathrin-dependent endocytosis and
is then sorted from early endosomes to caveosomes [31, 159,
179]. The clathrin polymerisation was shown not to be
required always for endocytosis in rat cells [36]. Adeno–
associated viruses are taken up by clathrin coated pits, but
these viruses are released from the endosomes and
accumulated in the perinuclear region as free particles
[16] in tissue culture cells. Mouse polyomaviruses enter
Rab 11 endosomes using the transferrin cargo [108]. The
integrity of the lipid rafts, however, is required for the
efficient multiplication and even in vitro transformation of
certain viruses (EBV) [107]. SV40 polyomavirus bypasses
the Golgi complex using a caveolae–mediated pathway
[140].

Intracellular trafficking of HIV-1 was shown to depend
on the interaction of dynamin-2 and NEF. Thus, the
transcytosis is dependent on clathrin-coated pits completed
by the dynamin-2 NEF complex [157]. Caveolin-1 and
dynamin-2 are required for the entry pathway of human
papillomavirus type 31 into keratinocytes [184] probably
requiring phosphorylation as described recently [189].

Transcytosis of Viruses within Fetal Tissue Cultures

Trophoblasts also contain caveolin-1, but its level is
reduced greatly during their differentiation into syncytio-
trophoblast [110]. This is probably the reason why a group
was unable to detect caveolae in syncytiotrophoblasts [111].
Caveolin-1 was shown to be also a regulator of apoptosis.
Trophoblast syncytialisation involves the apoptotic cascade.
Cytotrophoblast caveolin-1 may also play a role in
regulating fusion events involved in syncytium formation.

The differentiation of cytotrophoblast cells may increase
the efficiency of the artificial transduction of infection by
an AAV vector construct, but the uptake of herpes simplex
virus construct was shown to be inhibited [150]. Lipid raft
fractions contain the raft-associated proteins caveolin 1 and
2, flotillin 1 and 2, stomatin and the heterotrimeric G
protein, “Galphaq”. Caveolin-1 was shown to be internal-
ized to the mitochondria, but not to the Golgi or
endoplasmic reticulum. It was relocated to the plasma
membrane upon confluence. Apical microvillous mem-
branes of the syncytiotrophoblast cells revealed a high
degree of similarity to lipid rafts [149]. The authors
identified 57 proteins from microvillous membranes isolat-
ed from human syncytiotrophoblast cells and a considerable
part of them was shown to take part in viral transcytosis in
other systems.

Lipid rafts are detergent-insoluble. These are composed
of low-density membrane domains that are rich in choles-
terol and sphingolipids. Caveolae were found to be the
subdomain of the biochemically defined glycolipid raft and
its expression was associated with the protein caveolin-1.
This protein associates with numerous signaling molecules,
regulating their activity by holding them inactive. Rock-1 is
a protein, which promotes cytoskeletal re-organisation
important for syncytialisation and apoptosis, too. It was
shown to be associated with caveolin-1. A proportion of the
total cellular Rock-1 content was found in lipid raft
fractions, confirming its presence in the membrane of
confluent BeWu (trophoblast culture) cells. This close
association of plasmalemmal caveolin-1 with Rock-1
protein raises the possibility that caveolin-1 may regulate
Rock-1 within the trophoblasts [161].

The initial presence of HIV-1 within the endosomes is
mandatory for infection to take place. This process is
independent of the viral envelope proteins gp120 and gp41.
The Rab family of small GTPases coordinates the vesicular
transport between the different endocytic organelles [203,
227]. Distinct Rab proteins have been identified and each is
specifically associated with a particular organelle or pathway.
For instance, Rab5 is needed for early endosomes, Rab7 for
transport from early to late endosomes, and from late
endosomes to lysosomes, whereas recycling endosomes are
enriched in Rab11 [108, 227]. Caveolae are stable vesicles,
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which are activated by SV40 [191] transporting the virus to
the nuclear membrane. The internalization pathway leading
to HIV-1 infection of trophoblasts is independent of clathrin-
coated pits and caveolae but it was found to be sensitive to
raft-perturbing drugs [203, 205].

Early events associated with HIV-1 infection in polarized
human trophoblasts involved an active participation of the
endocytic machinery during the internalization of HIV-1 by
endocytosis, which resulted in the presence of viral material
within the endosomes. This was shown to be an obligatory
step for the HIV-1 uptake by human trophoblasts [203–205].

HIV-1 does not initially co-localise with transferrin, some
virions migrate at later time points to transferrin-enriched
endosomes, suggesting an unusual transit from the non-
classical pathway to early endosomes. Finally, virus internal-
ization in these cells does not involve the participation of
microtubules but relies partly on actin filaments [203–205].

One may conclude on the basis of the above findings,
that the uptake and transcytosis of viruses examined up to
now is very different from the mechanisms detected in
differentiated human cells [117]. Lipid rafts seem to possess
a crucial role in the transcytosis of viruses in fetal cells.

Possible Consequences of the Prolonged Interaction
of Viral Antigens with the Developing Fetal Cells
and Immune System

The differentiation of the human fetal immune system is a
process lasting up to the first days after birth. The fetal
cord-blood of women vaccinated with live rubella vaccine
during pregnancy contained specific IgM upon delivery
[70] without any clinical consequences of the virus
infection. Antibody production begins usually in the 22nd
week of the fetal life. The pregnant women who were
administered with influenza vaccine during the second half
of the pregnancy also possessed influenza-specific IgM in
their cord-blood [68, 162]. What might be the mechanism
of the fetal immunisation? The vaccines did not contain
whole virus particles. The products used for immunisation
were split- or subunit-vaccines.

The production of DNA-specific cord blood antibodies
could be detected as early as in 1995 [210]. The normal
human cord blood also contained (anti-idiotype) IgM
recognising the F(ab’)2 portion of IgG inhibiting its binding
to dsDNA. It was concluded that the human cord blood
may contain cells that form an idiotype/anti-idiotype
network [123, 144]. The idiotype is expressed on IgG and
the anti-idiotype is an IgM antibody that interferes with its
interaction with dsDNA [210]. Autoantibodies were shown
to be produced by normal fetal B lymphocytes [123] and
some of them might be associated with later autoimmune
diseases.

The reviewed findings indicate that certain viral antigens
introduced into the fetal organism are not accepted as self.
There are mechanisms, which allow specific but delayed
immune response directed against different proteins of
viruses. It has been suggested that interaction between
CXCR4 and CXCL12 are involved in maternal-fetal
immunological tolerance in all three trimesters of gestation
and contribute to the invasion of extra villous trophoblasts
during pregnancy [54, 217]. These extravillous tropho-
blasts, however, may carry maternal viruses accidentally
[19, 44, 56, 95, 96, 101, 211, 221]. The interferon alpha
insensitivity of these cells may facilitate viral transport [32].

It has been suggested that the infection of cells with human
herpesviruses might induce the expression of human endog-
enous retroviruses (HERVs) [24, 30, 76, 99, 106, 135, 170].
The vast majority of human endogenous retroviruses are not
expressed during pregnancy. The transfer or reactivation of
different herpesviruses in later stages of the pregnancy might
initiate expression of gene products of human endogenous
retroviruses, probably interacting with the fetal immune
system. It has been discovered recently, that syncytin
inducing the formation of syncytiotrophoblasts is a gene
product of the HERV-W Env gene [126].

In the case of the perinatal infection of the newborns by
symptomless hepatitis B-carrier mothers, neither the moth-
ers nor 45 % of the babies were shown to be able to
produce antibodies against the hepatitis B surface antigens.
90 % of the mothers, however, had antibodies against the
hepatitis B core antigen. In addition to this a prospective
study of four generations of families with vertically
transmitted hepatitis B virus indicated, that the virus is
spontaneously eliminated from the majority of the 3rd and
4th generations of the families [147]. The virus elimination
was dependent on the “non-immune non-cytocydal” virus
elimination mechanisms even in the case of the first
generation of symptomless persistant HBV carriers after
decades from the onset of carrier state [147].

The African Burkitt’s lymphoma has been studied by de-
Thé and colleagues in another major prospective study in
the seventies in Uganda [41, 42, 62]. Blood samples were
collected from 42,000 children who were tested for EBV
between 6 months and 2 years of age. After 7 years follow
up Burkitt’s lymphoma developed in 16 children. Surpris-
ingly all 16 children with the tumour already had EBV-
specific antibodies against Epstein-Barr virus at 6 months
of age. The authors concluded that an early and severe
primary EBV infection during the first months of life
represented the key event for later development of the
malignant disease. According to their hypothesis the source
of infection was probably the saliva, and breast milk of the
mothers since 65 % of all African women of reproductive
age shed infectious EBV in their saliva, compared with
12% of the women in the Western world [41, 42, 62].
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Four decades earlier the authors could not obtain
convincing information about the possibility of perinatal
and transplacental transmission of EBV. They have docu-
mented minor serological differences in EBV specific
antibodies of tumour bearing children in comparison to
those without lymphomas. In the light of the above
discussed data one cannot exclude the possibility that early
transplacental infection could have impaired the immuno-
reactivity of the children resulting in the development of
Burkitt’s lymphoma. The serological techniques used at that
time had not been sensitive enough to detect faint
serological differences between tumour bearing and healthy
children at the end of the study.

Conclusions and Perspectives

In spite of the tremendous experimental work on tumorigen-
esis new and new hypotheses are published in the literature
[94, 127, 136]. Alternative pathogenetic pathways had been
suggested by them for the role of Epstein-Barr virus in the
pathogenesis of autoimmune diseases, too [137].

Vertical transmission of human viruses occurs probably
more frequently than supposed previously. The acute
consequences of the transmission are probably very little
as reviewed and shown by several authors recently [34, 55,
71, 152, 222].

As far as the formation of malignancies is concerned,
two new pathogenetic hypotheses can be put forward. The
interaction of the fetal immune system with a growing
series of viruses and viral antigens might reduce the post
partum immune response of the individuals against many
different virus-coded proteins in the different stages of
tumour development from preneoplastic into neoplastic
tissues. The impairment of the B-cell populations due to
fetal depletion had been already documented [37].

The other possible, but yet unexamined effect of the
presence of viruses in fetal cells or tissues might be the
impairment of differentiation of virus carrier cells by
the micro-RNAs (miRNAs) produced or regulated by the
viral genomes [218, 229]. Viruses are also coding for
microRNAs. It has been shown, that polyomaviruses [26],
human cytomegalovirus [67], Kaposi’s sarcoma herpesvirus
[120], adenoviruses [2] and HIV-1 [146] are producing
miRNA molecules, which are able to modify the expression
of different host cell proteins. LMP-1 of Epstein-Barr virus
induces the expression of miRNA-146a [132] by the host
cell. The adenovirus coded virus-associated RNA mole-
cules were shown to be processed to functional interfering
miRNAs involved in virus production [2]. Papillomavirus,
however, was not shown to produce miRNAs, but its
presence can reduce the expression of miRNA-218 of the
malignant host cells [118].

The final conclusions of this synopsis are the following.
The transcytosis of the viruses is either enabled by the
antiviral IgG and the maternal fetal transport of maternal
antibodies [114], or the lipid rafts in the fetal tissues [149].
The transfer of virus carrier maternal lymphocytes may also
be the source of maternal-fetal virus transmission [17, 65,
92, 155, 175, 212]. The virus transmission by the oocyte
and spermatozoa had been proposed many years ago [10],
direct evidences, however, could only be presented regard-
ing the chromosomal integration of the human herpesvirus
type 6 in the last decade [12, 207, 209, 228].
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