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ved in the multistage carcinogenesis through which sis, aberrant promoter methylation and inherited pre-
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Introduction

Lung cancer is the major cause of cancer related mortali
ties in the Western world. Each year an estimated 178,100
new cases of lung cancer will be diagnosed in the United
States, and 160,400 individuals will die from this deadly dis
ease despite the best current treatment approaches. Smoking
(85% of the cases are in current smokers or former smokers)
plays the major role in the development of lung cancer, and
the prevention of smoking initiation and efforts to aid with
smoking cessation remain as the best defense against this dis
ease.! Of note, 50% of all newly diagnosed lung cancers in
the United States occur in people who stopped smoking 5 or
more years ago. Thus damage to the respiratory epithelium
appears to persist. In the past few years molecular studies
have revealed that these are multiple genetic lesions in the
respiratory epithelium of current and former smokers and
these appear directly associated with cigarette smoking.2,3,4

Lung cancer is divided into two main histologic groups:
small cell lung cancer (SCLC) accounting for ~20% and
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non-small cell lung cancer (NSCLC), which constitutes
the remainder of bronchogenic carcinomas. SCLCs
express properties of neuroendocrine (NE) cells; whereas
most NSCLCs lack these properties and can be divided
into three major subtypes: adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma. Clinically evident
lung cancers have clonal genetic changes involving muta
tions or expression abnormalities in multiple (~1O-20)

genes. If we can detect some of these genetic alterations in
preneoplastic respiratory epithelial lesions before cancer
develops, early intervention and chemoprevention in such
high risk individuals could greatly increase survival rates.

The purpose of this review is to summarize the recently
described molecular abnormalities in lung cancer patho
genesis including altered expression and function of onco
genes, loss of tumor suppressor gene (TSG) function, and
epigenetic processes such as tumor acquired aberrant pro
moter methylation.

Genome wide scanning approaches detect multiple
acquiredgenetic abnormalities in lung cancer

AlJelotyping studies on precisely microdissected tissues
including lung cancer, preneoplastic lesions, and normal
respiratory epithelium, showed that loss of heterozygosity
(LOH) on chromosome 3p is the earliest molecular change
in the development of lung cancer, and it is observed in
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more than 90% of small cell and squamous cell lung can
cers and in 50% of adenocarcinomas. 5 There are several
distinct regions of frequent allele loss on 3p including
3p12, 3p14.2, 3p21.3, 3p24, and 3p25 where frequent
allele loss occurs indicating the presence of multiple
TSGs. By analyzing microdissected sections of normal,
hyperplastic, and dysplastic epithelium, carcinoma in situ,
and invasive cancers from the same patient, it is possible
to order the progression of LOH changes from
3p---79p---78p---75q---717p.6

Microsatellite repeats are widely distributed throughout
the genome and show a high degree of polymorphism.
Microsatellite alterations are common in colon and
endometrial cancers due to the replication error repair
(RER+) phenotype related to mutations in the mismatch
DNA repair genes. In lung cancer 35% of SCLCs and 22%
of NSCLCs were found to have at least some microsatel
lite alterations, and correlation was made with reduced
survival, younger age, and advanced tumor stage.7-9 How
ever the REW phenotype seen in colon cancer with multi
ple abnormal alleles is very rare in lung cancer. So far
there has been no description of frequent abnormalities in
mismatch repair genes in lung cancer to explain the
microsatellite alterations.

Ielomeres are tandem hexanucleotide repeats (TTAGGG)
at the ends of all human chromosomes. Their normal short
ening occurs in all somatic cells and leads to cell senes
cence. By contrast, germ cells and cancer cells maintain
telomere length using the enzyme telomerase, and are able
to divide indefinitely. The telomere replication amplifica
tion protocol (TRAP assay), detected high telomerase activ
ity in almost 100% of SCLCs and 80% of NSCLCs, and
high telomerase activity was associated with advanced
pathological stage in primary NSCLC. lO ,11 Since telomerase
activity is associated with malignant growth, it is a marker
for lung cancer detection, and a new target for therapy. Why
telomerase is re-expressed in lung cancer cells is currently
unknown.

Growth factors: autocrine-paracrine loops are frequent
in lung cancers

Gastrin-releasing peptide (GRP)/ bombesin (BN)
autocrine loop - Many growth factors and their receptors
are expressed by lung cancer cells and adjacent normal
cells, thus creating the major autocrine and paracrine
growth regulatory loops. The best characterized autocrine
system in lung cancer is the gastrin-releasing bombesin
like peptides, (GRP/BN) and their receptors. There are
three GRP/BN receptors identified GRP-, neuromedin B
(NMBR), and BN subtype-3 (BRS-3), and they all belong
to the G-protein-coupled receptors subfamily. The recep
tors are expressed to variable degree in both SCLCs and
NSCLCs. 12 Immunohistochemical studies show that 20-
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60% of SCLCs express GRP/BN peptide ligands for these
receptors, whereas expression in NSCLCs is less fre
quent,13 No mutations have been identified for GRP/BN or
for their receptors, thus the mechanism of activation of this
growth stimulatory autocrine loop remains unknown. 14

Neutralizing monoclonal antibodies against GRP/BN
inhibits the in vivo and in vitro growth of SCLCs confirm
ing their role in lung cancer pathogenesis. Also these anti
bodies are being tested in clinical trials l4,15 as new forms of
therapy. Expression of gastrin releasing peptide receptor
in human respiratory tissues is associated with a prolifera
tive response of bronchial epithelial cells to GRP/BN and
with prolonged cigarette smoking and may be a risk factor
for development of lung cancer. There is significant evi
dence that women are more susceptible to tobacco smok
ing leading to lung cancer than men. Thus, it is of interest
that the GRP receptor is located on the X chromosome but
does not undergo X inactivation so that women have two
but men only one gene for the GRP receptor. Women
express GRP receptor more frequently than men in the
absence of smoking or after shorter smoking histories. 16

These conditions may be factors in the increased suscepti
bility of women to tobacco induced lung cancer. 16

The ERBB family - The protein product of the ERBB2
proto-oncogene is a transmembrane receptor tyrosine
kinase. The amplification of ERBB2 has been implicated
in a subset of breast and ovarian cancers. Abnormal
expression of the ERBB2 protein was reported in ~30% of
NSCLC (predominantly adenocarcinomas), 17,18 but has not
been found in SCLCs. Anti-ERBB2 monoclonal antibody
inhibited the in vitro growth of NSCLC expressing
ERBB2. 19 This antibody (HerceptinTM) is used in combi
nation with conventional chemotherapy in the treatment of
HER2/neu positive breast cancer , and this treatment has
been recently extended to clinical trials in lung cancer.

The c-erB-l proto-oncogene encodes ERBBI or EGFR
(epidermal growth factor receptor), which regulates cell
differentiation and proliferation. The activation of ERBBI
occurs via overexpression and is more common in
NSCLCs. 20,21 Monoclonal antibodies against ERBBI can
inhibit growth in overexpressing cell lines. Overexpres
sian of EGFR is associated with adverse prognosis of
NSCLC. 22 Also the new tyrosine kinase inhibitor drugs
such as ZD1839 (IRESS~llI 23 inhibit EGFR activity and
cause reduction of lung cancers in patients. 24 Thus, they
represent a new form of targeted molecular therapy.

The Hepatocyte growth factor (HGF) stimulates cell
growth and differentiation such as morphogenesis of the
epithelial cells, and it is expressed in NSCLCs, but not in
SCLCs, which suggests the existence of an autocrine loop
in NSCLCs. 25,26 By contrast the receptor for HGF is c-met
proto-oncogene product MET, which is expressed in both
SCLCs and NSCLCs. High HGF levels were associated
with poor survival in NSCLC patients. 27
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Other potential autocrine loops involved in lung cancer
are IGFI (insulin-like growth factor 1) and its receptor,
IGF2 (insulin-like growth factor 2),28 and platelet- derived
growth factor (PDGF) and its receptor. 29

Oncogenes are frequendy activatedin lung cancer

The dominant oncogene RAS plays a key role in signal
transduction and cellular proliferation. In the presence of
growth stimulatory signals RAS is activated, and the
MAPK (mitogen activated kinase) cascade is induced.
The RAS genes (KRAS, HRAS, NRAS) code for three dif
ferent guanosine triphosphate (GTP) binding proteins.
Hydrolysis of bound GTP to guanosine diphosphate
(GDP) inactivates the RAS growth promoting signal. In
the presence of oncogenic RAS mutations (nearly always
point mutations in KRAS), GTP cannot be hydrolyzed to
GDP, resulting in constitutively active RAS-GTP growth
promoting activity. RAS mutations are rare or non-exis
tant in SCLC, but are present in 15-20% of NSCLC. Up
to 30% of the adenocarcinomas carry RAS mutations usu
ally affecting codon 12 for KRAS (85% of cases), and
uncommonly codon 13 of HRAS, and codon 61 of
NRAS. 13 Most (70%) of these mutations are G-T trans
versions and are induced by bulky DNA adducts present
in tobacco smoke, such as BPDE (benzopyrene diethyl
OXide) and nitrosamines which attach covalently to the
DNA. This can explain the correlation between smoking
history and KRAS mutations. 30 Both in early and late
stage NSCLC, the presence of a KRAS mutation predicts
a poor prognosis.30- 33

The MYC proto-oncogenes (MYC, MYCN, MYCl)
encode nuclear phosphoproteins with a helix-loop-helix
domain and a leucine zipper motif at the C terminus and a
trans-activating domain at the N-terminus. MYC proteins
have a role in transcriptional regulation by heterodimeriz
ing with proteins such as MAX, MAD or MXll. The
MYC-MAX complex represses transcriptional activation.
MAX can bind MAD and MXll, thereby MYC is released
from the complex and functions as a transcriptional acti
vator. MYC can cooperate with a mutant RAS gene to
transform primary rat embryo fibroblasts to malignancy.
The activation of the MYC genes by amplification or loss
of transcriptional control resulting in protein overexpres
sian is a major molecular mechanism in the pathogenesis
of human lung cancers. MYC gene activation has been
observed in both NSCLC and SCLC whereas NMYC and
lMYC abnormalities mainly occur in SCLC. MYC ampli
fication occurs in 15-30% of SCLCs and 5-10% of
NSCLCs. 13 Lung tumor cell lines mostly derived from
metastatic tumors of patients who have relapsed after
chemotherapy have a high frequency of MYC amplifica
tion, and this probably explains the correlation of MYC
amplification with adverse survival. 34

The BCl-2 proto-oncogene is a key member of the
apoptotic pathway exerting an anti-apoptotic effect, and its
expression is negatively regulated by the tumor-suppressor
p53. BCL-2 heterodimerizes with a BCL-2 related protein
BAX, an apoptosis inducing protein and downstream tar
get of p53, thus overexpression of BCL-2 results in down
regulation of apoptosis. BCL-2 expression, detected by
immunohistochemistry, is significantly higher in SCLC
(75%-95%) ,35 than in NSCLC, and 25% -30% of the squa
mous cell carcinomas and 10% of adenocarcinomas
express BCL-2 protein. 36 Interestingly the response to
chemotherapy which occurs by way of apoptosis is much
better in SCLCs than in NSCLCS35 despite the high BCL
2 levels in SCLCs.

Tumor-suppressor genes are frequendy inactivated
in lung cancer

Candidate tumor suppressor genes at chromosome 3p
- As discussed above, allelic loss at chromosome 3p is a
frequent event in both SCLCs (>90%) and NSCLCs
(>80%).5,3739,40 This and the existence of homozygous
deletions in multiple lung cancer cell lines and tumors are
strong indications that there is one or more TSGs on
chromosome 3p. 37,41,42 There are several 3p homozygous
ly deleted regions: 3p12, 3p14.2 (FHIT region), and at
least three distict regions at 3p21.3. 43 ,44 More than 25
genes were identified in the sequenced 3p21.3 region 45

homozygous deletion,and extensive functional studies
are in progress to identify the lung tumor-suppressor
gene (s) which reside at this locus. Recent studies indicate
that several of these genes inhibit anchorage-independent
growth and tumor formation in nude mice. Among these
are the calcium channel auxiliary subunit, alpha (2) delta
2 (CACNA2D2),46 the SEMA3B protein,47 which trig
gers apoptosis in neuronal cells,48 and RASSFIA, a pro
tein with a RAS association and a DAG binding
domain. 49,50

Other candidate TSGs at 3p21 are BAPI (BRCAI bind
ing protein), and the hMlHl mismatch DNA repair gene.
A few lung cancer cell lines were found to have deletions
and mutations for BAP1. 51 Mutations of the hMLHl gene
have been reported in colorectal cancer, but there are no
reports in lung cancers. 52 The DUTTl (Deleted in U2020)
gene belongs to the neuronal cell adhesion molecules. It is
localized at 3p12, and is homozygously deleted in two
lung cancer and one breast cancer celllines,53 but no muta
tions were found when the ORF was screened on a panel
of SCLCs and NSCLCs (unpublished data). The FHIT
gene encodes a dinucleoside 5', 5'" -p1p3triphosphate
hydrolase, maps to the 3p14.2 region, and the loss of the
gene could result in the accumulation of diadenosine
tetraphosphate thus stimulating DNA synthesis and prolif
eration. Immunohistochemistry detected the absence of
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the FHIT protein in ~50% of primary lung tumors.44.54,55
Reintroduction of wild type FHIT suppressed in vitro
growth in a lung cancer cell line and in vivo tumori
genecity of lung cancer cells in nude mice. 56,57 The VHL
(Von Hippel-Lindau) gene at 3p25 is frequently mutated in
renal cell carcinoma, but mutations in lung cancer are
rare. 58 The hOGG 1 gene encodes a DNA glycosylase
which repairs oxidatively damaged DNA. Two missense
mutations were identified in a mutational screening of 25
SCLC tumors. 59 The RAR~ (retinoic acid receptor beta)
gene, located at 3p24 is a strong TSG candidate. Low or
absent RAR~ mRNA expression was detected with high
frequency in lung cancer cell lines and primary lung
tumors. It appears to result from aberrant promoter methy
lation of the RAR~ and was observed in ~40% of primary
SCLCS. 60,61

P16-cyclin Dl-CDK4-RB pathway - The RB gene is
located on chromosome 13q14, and its protein product is a
nuclear phosphoprotein initially identified as a TSG in
childhood retinoblastomas.62 The phosphorylation status
of the RB protein and its interaction with transcription fac
tor E2F is one of the most important determinants in the
regulation of GO/G1 transition.63

When RB is dephosphorylated it suppresses the G1 to S
phase transition. During G1 cyclin D1 is associated with
cyclin-dependent-kinases (CDK2 and CDK4); this results
in the phosphorylation, and activation of RB. Hypophos
phorylated RB binds the E2F transcription factor, thus
blocking the transcription of genes regulating the cell
cycle. When RB is phosphorylated E2F dissociates and
activates the transcription, thus facilitating S phase entry.
Abnormalities of the RB gene in lung cancer include dele
tions, nonsense mutations and pathogenic splicing varia
tions. More than 90% of the SCLCs, and 15-30% of the
NSCLCs have abnormal or no RB expression.6466 The
absence of RB expression was associated with poor prog
nosis in stage I and II NSCLCs,67 but other studies did not
support this finding. 68,69 In addition germline carriers of an
RBmutation are 15 times more likely to die from lung can
cer than unaffected individuals. 70

p161NK4 is a kinase inhibitor of CDK4 and thus is an
inhibitor of RB phosphorylation making it also a TSG. 71

The p16INK4 gene is most commonly altered in NSCLCs by
aberrant promoter rmethylation (25%)60,72 and homozy
gous deletions or point mutations (10%_40%).7376 It is not
clear whether loss of pl(jNK4 results in poor prognosis in
NSCLCs.77,78

p 19ARF is a p16 splice variant with a common
nucleotide, but different amino acid sequence, and there
fore an altered reading frame from p16INK4. p19ARF was
shown to play an important role in tumor-suppression
with binding to the MDM2-p53 complex and thus pre
venting p53 degradation. p19ARF was found more fre
quently lost in lung tumors with neuroendocrine fea-
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tures79 Thus the p161NK4 p19ARF locus products interact
with both the Rb and p53 pathways.

The p53 pathway - The p53 gene is located at 17p13.1,
and encodes a 53 kd nuclear protein that acts as a tran
scription factor, blocks the cell cycle at late G1, and also
can trigger apoptosis. Thus p53 has a role in maintaining
the stability of the genome during cellular stress from
DNA damage, hypoxia, and activated oncogenes. 80 p53
activates the transcription of the downstream target genes
p2l, MDM2, GADD45 and BAX7 Loss of heterozygosity
at 17p13 is very frequent in lung cancer, and the other
p53 allele is inactivated by mutations in different types of
cancers including lung cancer. Mutational inactivation of
p53 occurs in >75% of SCLCs, and 50% of NSCLCs.8183

The majority of the mutations are G to T transversions,
and mutational hot spots can be correlated with BPDE
adducts, a carcinogen present in tobacco smoke.4 p53
missense mutations usually lead to increased protein
half-life, thus overexpression of the p53 protein can be
easily detected by immunohistochemistry.84 Abnormal
p53 expression has been correlated with a better, but in
some cases poor, prognosis. 85 Wild type p53 is delivered
by adenoviral or retroviral gene therapy into tumors by
local injection and induce tumor regression in ongoing
clinical trials. 86,87

PTEN (Phosphatase Tensin Homolog Deleted on Chro
mosome Ten) gene is located at chromosome 10q23 and
its protein product is a lipid phosphatase, which dephos
phorylates PIP3 and has been shown to have tumor sup
pressor activity in vitro and in vivo. A few lung cancer
cell lines and primary tumors have mutations or dele
tions of the PTEN gene.88 Another candidate TSG on
chromosome 10q25-26 is DMBTl. It is frequently down
regulated and occasionally homozygously deleted in
lung cancer.89

Aberrant promoter methylation frequendy occurs
and extinguishes gene expression in lung cancer

Gene expression can be turned off by aberrant promoter
methylation of the promoter region acquired in tumors. In
human neoplasias tumor acquired promoter methylation
has been found to be a major alternative mechanism to
mutations in inactivating TSGs and silencing the expres
sion of other cancer related genes. Abnormalities in 5'
CpG island methylation have been described previously
for several genes in lung cancer. 90 In a recent study, 107
resected primary NSCLCs and 104 corresponding non
malignant lung tissues were analyzed by MSP (methyla
tion specific PCR) for aberrant promoter methylation in
eight different genes. Aberrant methylation in the tumor
samples was detected in 40% for RAR~, 26% for metallo
proteinase-3 inhibitor (TIMP-3), 25% for p161NK4a, 21%
for 06methylguanine-DNA-methyltransferase (MGMT),
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19% for death-associated protein kinase (DAPK), 18% for
E-cadherin (ECAD), 8% for p14ARF

, and 7% for glu
tathione-S-transferase PI. Promoter hypermethylation of
these genes was not significantly correlated with patient
survival.60

Tumor angiogenesis effects the prognosis
oflung cancerpatients

Tumor growth requires angiogenesis, the development
of new blood vessels. There are multiple angiogenic fac
tors, inducers and inhibitors regulating endothelial cell
proliferation and migration. Various growth factors have
been shown to stimulate angiogenesis including vascular
endothelial growth factor (VEGF), basic fibroblast
growth factor (bFGF) and platelet-derived endothelial cell
growth factor (PD-ECGF). Expression of angiogenesis
and these factors influence the clinical behavior of lung
cancer. VEGF expression was associated with new blood
vessel formation, decreased overall and disease free sur
vival, and was an independent prognostic factor in
NSCLC patients.9! Expression of the basic fibroblast
growth factor (bFGF) was found to be a prognostic indi
cator in pulmonary adenocarcinoma, since the 5 year sur
vival rate was significantly lower for bFGF positive
patients.92 Upregulation of the platelet-derived endothelial
growth factor (PDGF) was associated with a more aggres
sive tumor phenotype in patients with node negative dis
ease. 93 There are new lung cancer treatment strategies
against angiogenesis, particularly targeting VEGF and its
receptors. The VEGF receptors KDR and FLT have tyro
sine kinase activity and occur frequently in smoking dam
aged lung. Clinical trials in lung cancer are in process
with a "humanized" monoclonal antibody against VEGF
which blocks its binding to its receptor and with tyrosine
kinase inhibitor drugs.

Preneoplastic lesions occur frequendy in the smoking
damaged lung

Detection of genetic abnormalities in the smoking dam
aged lung epithelium may be useful in the identification of
patients at high risk for developing lung cancer. Preinva
sive preneoplastic lesions such as hyperplasia, dysplasia,
and carcinoma in situ, contain genetic changes such as
allele loss at 3p, 9p, 8p, 17p, MYC, RAS and p53 muta
tions.? As described previously there is a sequential order
of how these alterations occur. Recent studies suggest that
the above changes can be observed even in normal appear
ing bronchial epithelium of former and current smokers
with 3p allele loss being the earliest event,2 These abnor
malities could be candidate biomarkers for the detection of
early lung cancer and the identification of individuals at
high risk of developing lung cancer.

Inherited lung cancer susceptibility

While the majority of the lung cancer cases are due to
cigarette smoking, epidemiologic studies suggest that
lung cancer aggregates in families. There is an increased
risk for developing lung cancer for first degree relatives
of younger age, non-smoking lung cancer cases. There
are a number of inherited susceptibility polymorphisms
that are thought to be important in the risk of developing
lung cancer. These include polymorphisms in the
cytochrome P450 enzymes (phase I and phase II
enzymes), and phase III, glutathione-S-transferases,
which play a role in eliminating certain carcinogenes
including polycyclic aromatic hydrocarbons.94 Individu
als also vary in their susceptibility to carcinogen and
mutagen induced chromosomal breaks. 95 Increased num
ber in peripherial blood lymphocytes after in vitro car
cinogen treatment is associated with increased lung can
cer risk. This is particularly true of BPDE induced breaks
in the 3p2I.3 region. 96

Conclusion

In the past few years, our understanding of the molec
ular pathology of lung cancer has advanced rapidly. Sev
eral genes and their corresponding protein products have
been identified, including oncogenes, tumor suppressor
genes, growth factors and their receptors, and genes
involved in DNA repair.

Genetic changes can occur at a very early "preneoplas
tic/preinvasive" stage, therefore detection of genetic
lesions in preneoplastic tissues combined with new radi
agraphic screening methods, such as spiral CT scans, will
open new doors for early diagnosis, identifying individu
als at highest risk of developing lung cancer, and direct
ing intervention with chemoprevention. These new find
ings of molecular pathology will lead to new treatment
strategies, including drugs designed to inhibit enzyme
activity, the use of monoclonal antibodies against growth
factors and their receptors, immunization against tumor
specific mutant peptides, blocking the expression of acti
vated oncogenes with antisense agents, the replacement
of defective tumor-suppressor genes (gene therapy), and
application of apoptosis modulators. These new tools
will usher in a new era in the diagnosis, prevention and
treatment of lung cancer.
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