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Syndecans are transmembrane proteoglycans, with 
core proteins mainly decorated with heparan sul- 
fate chains. Syndecan-1 is expressed in a tissue-, 
cell- and differentiation-specific manner. Its extra- 
cellular domain can bind via HS chains to matrix 
elements, to growth factors (especially "heparin- 
binding" proteins) and to certain biological agents. 
The ectodomain released by proteolysis can also be 
functionally active. The cytoplasmic domain can 

take part in signaling processes as well  as in modi- 
fying cell shape. In hematopoietic cells syndecan-1 
is expressed in normal pre-B-cells and plasma cells, 
as well  as in plasmocytoid and lymphoplasmocy- 
toid malignancies. According to our study synde- 
can-1 is expressed in B-CLL cells both in tissue 
environment and in circulation. (Pathology Onco-  
logy Research Vol 3, No  3, 183-191, 1997) 
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Introduction 

Life is dependent, essentially, on the highly regulated 
crosstalks and interactions between the cells and their 
microenvironment (other cells, matrix; including blood ves- 
sels). Proteoglycans (PG - where the core protein is deco- 
rated with sulfated sugar chains) - either as cellular or 
matrix elements (Table 1.) - are more and more appreciated 
participants of these interactions. 1-7 The aim of this review 
is to offer a brief outline on a peculiar family of PGs, the 
syndecans, especially syndecan-1 in hematopoietic cells. 

The core protein of PGs is glycanated by glycosamino- 
glycans (GAG). (The enzymes responsible for GAG 
biosynthesis are located largely in the Golgi apparatus.) A 
tetrasaccharide "linkage region" (-glucuronic acid- 
galatose-galactosc-xylose-) attached to a serine residue in 
the core protein is the starting point for polysaccharide 
chain elongation. The biosynthesis of heparan sulfate (HS 
- which is the main GAG of syndecans) starts as alternat- 
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ing D-glucuronic (GlcA) and N-acetyl-D-glucosamine 
(GIcNAc) units, joined by 1---~4 linkages. The structure is 
further modified, N-deacetylated/N-sulfated, by C5 
epimerization (GlcA---~ldoA; iduronic acid) and various 
O-sulfations. The variability of these modifications allows 
for some 30 different disaccharide sequences. 

The binding of HS sequences to proteins is usually ionic, 
and involves positively charged, generally clustered amino 
acids in the core protein. The interaction between HS and 
proteins is dependent on the presence of sulfate groups, but 
it is difficult to identify the groups actually essential for 
binding. It is also known that properly spaced sequences 
along the HS chain may form functional domains (when 
bound to growth factors or to other elements). 1~ 

The syndecan (greek: syndein + glychos)family has four 
members, whose core protein carries partly heparan sulfate 
(HS), and partly chondroitin sulfate (CS). These sulfated 
sugar chains are responsible mainly for the functional activ- 
ity of syndecans, i.e. to react with widely different mole- 
cules, e.g. growth factors, matrix components, proteases and 
their inhibitors, biological agents, etc. 7-13 

The known members of the family (in vertebrates) are: 
syndecan-I (epithelial syndecan); syndecan-2 (fibrogly- 
can; connective tissue syndecan); syndecan-3 (N-synde- 
can; neural syndecan); syndecan 4 (amphiglycan, ryudo- 
can; ubiquitous syndecan).H The expression of syndecan 
is regulated at different levels (transcription, translation, 
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Table 1. P r o t e o g l y c a n s  8,9 

Localization Type GAG chain 

Intracellular serglycin HS/CS 

Membrane 
SLIPS 

GRIPS 

part-time 

(syndecan-like integral 
membrane proteoglycans) 
syndecan-1 HS/CS 
syndecan-2,-3,-4 HS 
(glypican-related integral 
membrane  proteoglycans) 
glypicans HS 
PGs 
betaglycan HS/CS 
CD44 CS 

Extracellular 
SLRPS 
- class I 
- class II 

- class III 

(small leucin-rich proteoglycans) 
decorin, biglycan CS/DS 
fibromodulin, lumican, keratocan 
PRELE osteoadherin KS 
epiphycan CS/DS 
osteoglycin KS 

Modular PGs 
- hyalectans (hyaluronan- and lectin 

binding PGs) 
versican, aggrecan, neurocan, 
brevican 

- non-hyaluronan-binding PGs 
perlecan, agrin, testican HS/CS 

posttranslation) which contributes to the cell-type-, tissue- 
type- and differentiation-dependent appearance. 15'16 Syn- 
decan-1 is rather characteristic on differentiated epithelial 
ceils, syndecan-2 on fibroblasts, 17 endothelial cells, 18 and 
hepatocytes, 19'2~ syndecan-3 on neural elements (e.g. on 
Schwann cells), 21'22 while syndecan-4 can be expressed by 
various cell types.23zs The structures of syndecans are very 
similar. Moreover, the transmembrane and cytoplasmic 
parts are highly conservative - only the extracellular parts 
show individual amino acid sequences, including glycana- 
fion sites; therefore differences in the degree of glycana- 
tion) 'm4 (Fig. 1). The extracellular part (ectodomain) 
contains protease-sensitive cleavage site(s). 26 

Syndecan.1 

Structure and expression 

The syndecan-1 gene was first cloned from mouse 
mammary epithelial cells. 27 Now the cDNA sequences in 
human, 28 rat, 29 and hamster cells 3~ are also known, 
together with the whole mouse gene (23 kb), including 
the promoter region. 3~ 

In mice the syndecan-1 gene is localized on chromo- 
some 12, in humans on chromosome 2 (2p23-24-  2p24.1), 
close to the N-myc gene. In addition, some important 
genes have been identified in the vicinity (in the same 
linkage-group): DEAD-box genes, omithin decarboxy- 
lase, ribonucleotid reductase. 33'3a The homology in the 
mouse and human syndecan-1 gene and protein is rather 
high, 78% and 77%, respectively. 32-3~ The cytoplasmic and 
transmembrane domains are evolutionarily conserved 
(suggesting important biological function). (Fig. 2). The 
gene has 5 exons and 4 introns, the first intron being large 
(17 kb), compared to the others. Exon I contains the signal 
sequence, exons I I - IV the coding sequences for the extra- 
cellular domain (with the five potential glycosylation 
sites), while exon V for the transmembrane and cytoplas- 
mic domains. The exons are situated between two non- 
translated end-regions. Northern hybridization results in 
two mRNA bands, 3,4 and 2,6 kh, where the difference is 
due to the various degree of adenylation at 3' polyadeny- 
lation sites. 

The promoter region has three transcription-initiation 
sites. Binding sites for a variety of different transcription 
factors support the transcription of syndecan-l,  both in 
constitutively and specifically regulated manner. The for- 
mer is indicated by binding sites (boxes) for AP2-TF and 
Spl-TF, which are common in the promoter regions of  
"house-keeping" genes, while the latter is performed 
mainly by binding sites for Antp-TE NFKB-TE MyoD-TF 
and C/EBP boxes, which are more responsible for tissue-, 
cell or differentiation-specific expression. 2~'3~'37,38 (Fig. 3) 

The syndecan-1 protein (69kDa) - similarly to other 
P G s  - is glycanated in the Golgi apparatus, and after the 
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Figure 1. Protein structures of syndecans. N - glycosylation 
site; dotted line - GAG-binding sites; arrows - proteolytic 
cleavage sites; T - tyrosine phosphorylation site 
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Figure 2. Protein homology of syndecan 1 in various species. 
Numbers show homology in percentages. SS - signal sequence; 
EC - extracellular domain; TM transmembrane domain; CY 
- cytoplasmic domain 

removal of  a signal peptide sequence it will reach the cell 
membraneY 2 The N-terminal end carries those amino 
acid sequences which are able to link covalently to the 
sugar chains at their serines. In syndecan-1 the DGSGD 
and F S G S G T G  sequences can bind primarily HS, while 
EGSGE and E T S G E  sequences both HS and CS chains. 39 
The glycosylat ion degree and pattern of the extracellular 
part can be tissue-specific. 4~ The number and length of 
HS and CS chains, as well as their ratio (HS/CS) ensure 
the heterogeneity of syndecan-1. The most frequently 
observed isoforms are: ~10(I kDa mainly in squamous 
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Figure 3. Structure of mouse syndecan-I gene and mRNA.  
Upstream regulatory region: binding regions: a E-box (e.g. 
MyoD=TF); b - NF-~cB; c tata-like box (Antennapedia TF); d 
- C/EBP-box (e.g. NF-IL6); e - GC-box (e.g. Spl-TF, AP2-TF); 
arrozos - transcription initiation sites; Gene: numbered boxes 
are the exons; the sizes of introns are above the open boxes; 
tuRNS: upper row shows the mature m R N A  (exons); the lower 
row shows the translated and non-translated coding regions, nt 
- non-translated, s - signal sequence, ec - extracellular 
domain, t - transmembrane domain, cy - cytoplasmic domain, 
pa - polyadenylation sites. The thick line shows the translated 
protein. 

cells and plasma cells - localized on the surface by sur- 
rounding the cell; -160  kDa mainly in glandular and sin- 
glc layered epithelial cells - localized especially on the 
basolateral aspect of the cell; and ~300 kDa mainly in 
fibroblasts (in vitro) localized intracellularly. ~''41-47 It 
has been observed that the various HS/CS ratios allow 
the binding of different molecules 4s (e.g. on dental mes- 
enchymal cells syndecan-I can bind tenascin, while 
mammary epithelial cells with different HS/CS r a t i o -  
glycanation pattern - are unable to bind49). Syndecan-I 
has a rather extended core protein which allows the bind- 
ing of HS chains at relatively far distances from each 
other and facilitates interactions of individual HS chains 
at the same time (e.g. syndecan- 1 can be immobil ized by 
one of  its HS chains to fibronectin or collagen, and can 
interact - simultaneously - with bFGF; basic fibroblast 
growth factor). However,  the free HS chains can bind to 
only one of  the two proteins, suggesting much more 
functional versatility for intact PG than for individual HS 
chains. The two potential proteolytic sites contribute to 
the heterogeneity of the extracellular appearance of  syn- 
decan-1, since the extracellular part can be clcaved off or 
endocytosized. 56 

The expression of syndecan- 1 can be influenced by hor- 
mones (e.g. testosterone, glucocorticoids), 5143 and by 

cytokines (Table 2). The stimulation of cAMP signals has 
been described to activate the mRNA pool of syndecan-1 in 
mouse peritoneal macrophages. 51 Bernfield et al studied the 
expression of the members of the syndecan family in vari- 
ous cells and tissues, in vitro. 15 They found large amounts of 
syndecan-l in epithelial cells, plasma cells and fibroblasts, 
smaller amounts in neural cells, in some endothelial and 
pre-B cell lines. Accordingly, the syndecan-1 mRNA 
expression was high in organs rich in epithelial cells (skin, 
liver, kidney, lung), and lower, but still significant, in the 
brain and small intestine. In the mouse embryo the synde- 
can- I protein was already present in the four-cell stage, and 
after gastrulation the expression increased in the ectodermal 
components. ~'~5'56 Differentiation-dependent change of 
expression has been observed at the interactions of epithe- 
lial and mesenchymal cells, 5zSs in different organs (teeth, 59-6~ 
kidney, 6~62 skin, cornea, 63 female genital-tract, 42 lung, 43 

skeletal muscle, 64 B-cells,~5). Interestingly, the expression 
decreased with the transformation of differentiated epithe- 
lial cells (keratinocytes, 66 and epithelial cell lines, 67 in vitro), 

and with the dedifferentiation of epithelial malignancies 
(head and neck-, 6~ cervix-, ~'9 breast-, 52 colon-carcinoma] ~ 
hepatocellular carcinoma, 7~ teratocarcinoma72). 

Function 

ILrtracellular domain. - The function of syndecans, 
similarly to other PGs, is determined mainly by the HS 
and CS chains of  the extracellular domain. 7~ Syndecan-1 
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Table 2. Influence of cytokines on syndecan-1 expression 

Cytokine Change Expression Cell type Ref 

TGF[3, bFGF up mR_NA, protein mouse 3T3 fibroblasts, NMuMg (55) 
TGF[~, bFGF up only CS chain human lung fibroblasts (54) 
PDGF up mRNA, protein rat vascular smooth muscle cells (64) 
TNFc~ down mRNA, protein mouse endothelial cells (18) 
IL-6 down protein human B-cells (116) 

may carry both, but functionally the HS chains seem to be 
more active (especially by interacting with the "heparin- 
binding" proteins). HS chains can act as 

receptors 01" co-receptors for different ligands, TM as 
�9 extracellular matrix components: collagen I-III-V, 75 

fibronectin, thrombospondin, 7" tenascinS 'Ts ampho- 
therin and laminin. 79 Essentially, these interactions 
encourage the binding of the cell to the matrix 
(adherency). It has been shown that transfection of 
syndecan-1 increased the adherency of lymphoid 
(Raji) cells and at the same time inhibited the invasive 
capacity of the cells on collagen I coated surfaces. 
The interactions between syndecan-1 and the different 
matrix elements help to fix the cell in a given 
microenvironment, s~ Besides the cell-matrix co- 
operation, syndecan- l takes part in cell-cell adhesion, 
either as an adhesion molecule or as the activator of 
other adhesion factors. 

�9 "heparin-binding" cytokines, growth factors (e.g. 
bFGF, midkine)Y 2 s5 Syndecan-1, acting as an essential 
co-receptor for bFGF, is expressed on fibroblasts dur- 
ing their differentiation until it is required, i.e.until the 
fibroblasts need bFGF for differentiation. ~ ~'~(' Besides 
bFGF, a co-expression of TGF]31 (transforming 
growth factor-beta; which is also a "heparin-binding" 
protein) with syndecan-I was also observed during 
the development of  certain organs. It is highly possi- 
ble, that these factors and syndecan-1 can influence 
each others' expression, working as a feed-back regu- 
latory network. 54 

�9 different biological agents as parasites, viruses, bac- 
teria, which can use syndecan-1 as a membrane- 
receptor helping their binding to the target cells. ~7,~s 

The extracellular domain of syndecan-1 released by pro- 
teolysis 27 could perform functional activity: 

�9 The release itself could decrease the anchorage of the 
ceil to the matrix, promoting detachment of the cell 
from the matrix and supporting cell mobility. 

�9 Another consequence could be an effect of the accu- 
mulated extracellular domain on cellular activities, 
either in autocrine or paracrine fashion. This is sup- 
ported by the experiment where the soluble extracel- 
lular domain given exogenously inhibited the prol(f- 

eration of certain tumor cells, in vitro, without influ- 
encing the normal counterparts. 89 The effect could be 
inhibitory, i.e. the growth factors "trapped" by the 
released ectodomain. 

�9 It is possible that the released extracellular domain or 
its negatively charged sulfated sugar chains (especial- 
ly HS) can reach the nucleus and bind to transcription 
factors or other nuclear proteins which modify/regu- 
late DNA activity. H 

Cytoplasmic domain. - The cytoplasmic domain is 
conserved with potential phosphorylation sites 
(tyrosines) (there is a consensus sequence for the recog- 
nition by tyrosine kinase). The role of this domain is still 
not understood, although some results emphasize its 
importance: 

�9 The potential tyrosine phosphorylation indicates that 
syndecans could be cascade elements in signal trans- 
ductions; e.g. the cytoplasmic part of syndecan-2 and 
-3 are substrates for protein kinase C (but syndecan-1 
and -4 are not). 

�9 The change in phosphorylation of syndecan-1 could 
take part in the regulation of the release of the extra- 
c e l l u l a r  d o m a i n .  9~ (The cytoplasrnic domain is prob- 
ably activated by phosphorylation, which is regulated 
mainly by phosphatases. Phosphatase inhibition by 
orthovanadate and pervanadate released the inhibited 
tyrosine kinase and the cytoplasmic domain became 
phosphorylated.)9~ 

�9 The cytoplasmic domain can interact with other cyto- 
plasmic components (e.g. F-actin filaments) influenc- 
ing the change in cell shape. It is believed that func- 
tion is independent from the quality or quantity of the 
extracellular sugar chains.  22'9L93 

�9 A significant task for the cytoplasmic domain could 
be the guide of the molecule towards the cell mem- 
brane. The localization of a mutant syndecan-1 was 
changed by deleting the last 12 amino acids from the 
C'-terminal end. The mutant form appeared not only 
on the basolateral surface (as the wild form) but api- 
cally as well, on MDCK and CHO cells. It is interest- 
ing that similar deletion in the cytoplasmic domain 
did not influence the migration of syndecan-1 to the 
cell membrane. 92'94 
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Figure 4. Expression of syndecan-1, a, b - intensive labelling of plasma cells in lymph node; c - plasma cells in normal bone mar- 
row; d - myeloma cells in bone marrow; e - B-CLL; f -  Hodgkin disease (note the positivity of plasma cells and negativity of 
Hodgkin cells). 

Syndecan-1 and the hematopoietic cells 

Bone marrow stem cells and stromal cells - It is known 
that the differentiation of  hematopoietic cells in the bone 
marrow requires a continuous interaction between stem 
and/or precursor cells and stromal cells. Many observa- 
tions support the role of PGs in these interactions: the stro- 
mal cells in the bone marrow produce CS and hyaluronic 
acid, less DS and HS; 95-97 exogenous, purified GAG given 

to bone marrow strornal cells inhibits GM-CSF activity; 98 
HS isolated from bone marrow stromal cells can bind GM- 
CSF and the biologically active form of IL-3; 99 the 
removal of HS and CS chains decreases the adhesion 
between stromal cells and hemopoietic cells. ~~176 

Endothelial cells - Endothelial cells are normally syn- 
decan-1 negative, but they express different HSPGs upon 
activation: syndecan- 1, -2, -4, glypican and perlecan. This 
expression is influenced by inflammatory processes, since 
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F(g, ure 5. Localization of syndecan-I an HT58 cultured human NHL cell by confocal 
microscopy (fluorescent immuncytochemistry with Serotec monoclonal antihuman synde- 
can-1 antibody after fixation). More than 75 percent qf HT58 cells shaw this in-homoge- 
neous, polarised cell surface positivity of syndecan-1, a - 8-th slide from 16 slides, b - 12- 
th slide from 16 slides. 

GAG production is increased by IL-1, TNFcr and TGF~3, 
while being decreased by certain injuries (e.g. virus-infec- 
tion or hypoxia)Y H HS released from the endothelial sur- 
face by proteolysis can stimulate the activity of APCs 
(antigen-presenting cells), t~ It is also known that heparin 
inhibits the P- and L-selectin mediated "leucocyte rolling" 
on the endothelial cells. H~3 

Lymphoid ceils. - In lymphoid cell differentiation the 
early forms of B-cells have a relatively close relationship 
with the stromal cells, which is ended by the immunglob- 
ulin-gene rearrangements, and finally the B-cells leave 
the bone marrow and reach the secondary lymphoid 
organs. Here, antigen stimulus can transform B-cells into 
antibody-forming plasma cells. Interestingly, these stages 
are accompanied by changes in syndecan-1 protein 
expression: it is present on the pre-B-cells in the bone 
marrow and also on the plasma cells (i.e. when the cells 
seem to require tissue environments and interactions), 
while it is missing from the circulating B-cells. 6s 
Different experiments showed that following activation or 
repeated irnmunization, the plasma cells appearing at day 
7-10 expressed syndecan-1, but memory cells appearing 
later, did not. m4-"' Similarly, in mouse spleen the immu- 
nization activated antibody-forming cells proved to be 
syndecan-I positive. ~~ Recently, two new genes were 
described in relation to maturation of plasma cells: B- 
lymphocyte-induced-maturation-protein (Blimp) and B- 
cell-specific-activation-protein (BSAP): their expression 
changed together with syndecan-1, increased (B-limp and 
syndecan-I)  or decreased (BSAP).  ~~ All these infor- 
mation suggest that syndecan-1 is required for B-cells at 

certain stages of differentiation, either to contribute to 
their immobilization in a particular tissue environment 
and/or to serve as a receptor to bind certain growth/matu- 
ration factors. The former possibility is further supported 
by the findings that cells of plasmocytoma lines were 
readily attached to collagen, aS'~ and that syndecan-1 par- 
ticipated in the adhesion process of lymphoid cells. 8~ ~2 It 
should be emphasized again, that the fine structure of HS 
can differ on identical PG core proteins influencing fun- 
damental cellular properties. E.g. two myeloma lines with 
almost the same amounts of syndecan-1 and similarly 
sized core protein and HS chains showed highly different 
binding to type I col lagen] ~ 

The question arises that if syndecan takes part in the reg- 
ulation of B-cell differentiation, how does it change - if at 
all - in leukemo- or lymphomagenesis. As mentioned, the 
dedifferentiation of epithelial tumors was accompanied by 
the decrease or loss of syndecan-1 expression. This is def- 
initely not the case with plasma cells, since the expression 
of syndecan-1 is maintained in myeloma/plasmocytoma 
cells, as well as in lyrnphoplasmocytoid lymphoma cells. In 
our study - on more than 50 human NHLs - the plasmocy- 
toid or lymphoplasmocytoid tumors also showed positivity 
(Figs. 4,5). Moreover, practically in all B-CLL cases both 
circulating leukemic cells and those infiltrating the lymph 
nodes expressed syndecan- 1 (mRNA and protein).l~4 These 
results are opposed to the observation of others' on B-CLL 
cells as well as on Reed-Sternberg cells ~ hs (in our Hodgkin 
lymphoma cases the tumor cells proved to be negative). 
The differences are probably caused by using different 
antibodies or different antigene-retrieval techniques. 
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The biological  s ignif icance of syndecan-  1 expression in 

hemopoet ic  cells is still to be undertstood. The puzzle is 

compl ica ted  by the fact that until now none  of  the other  

lymphoid  cell types - normal  or mal ignant  T-cells, as well 

as B-cell l y m p h o m a s  except  those ment ioned  above  - were 

found to express  syndecan- l .  Moreover ,  if syndecan-1 is 

expressed only in certain l eukemias / lymphomas ,  is it 

involved in the pa thogenes is  of these mal ignancies ,  or is it 

merely  " jus t"  an accompany ing  by-stander?  
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